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Introduction

It is the object of this introduction to give a general survey
of the material which faces the student of algebraic topology, and
at the same time to give a guide to the sources from which this
material can most conveniently be studied. It seems convenient to
alternate between passages which comment on the material and
passages which comment on the literature. When I have had to
comment on a topic which has been treated by several authors, I
have sometimes felt a responsibility to offer the student some
guidance on which source to try first; I have done this by marking
a recommended source with an asterisk. This does not mean that
the other sources are not also good; some students may prefer
them, and most will profit by seeing the same topic treated from
more than one point of view. In some cases the marked source is
chosen on the grounds that it gives a particularly short, simple or
elementary account, while the others give longer, fuller or more
advanced accounts.

In what follows, I shall refer to the following list of sources
available in book form. A reference to the author's name, without

further details, is a reference to this list.

J. F. Adams, 'Stable Homotopy Theory’, J. Springer, 2nd ed.
1966 (Lecture Notes in Mathematics No. 3).
P. Alexandroff and H. Hopf, ’'Topologie', J. Springer 1935,



R.

. André, 'Méthode Simpliciale en Algébre Homologique et Algebre

Commutative', J. Springer 1967 (Lecture Notes in Mathema-
tics No. 32).

. F. Atiyah, 'K-Theory', Benjamin 1967.

Borel, 'Topics in the Homology Theory of Fibre Bundles’',
J. Springer 1967 (Lecture Notes in Mathematics No, 36).
Cartan and S. Eilenberg, 'Homological Algebra’, Princeton
University Press 1956 (Princeton Mathematical Series
No. 19).
E. Conner and E. E. Floyd (1), 'Differentiable Periodic Maps',
J. Springer 1964 (Ergebnisse series No. 33).

. E. Conner and E. E. Floyd (2), 'The Relation of Cobordism to

K-theories', J. Springer 1966 (Lecture notes in Mathematics
No. 28).

. Dold, 'Halbexakte Homotopie Funktoren', J. Springer 1966

(Lecture Notes in Mathematics No. 12).
Dugundji, 'Topology', Allyn and Bacon 1966.

. Eckmann, 'Homotopy and Cohomology Theory', in Proceedings

of the International Congress of Mathematicians 1962,
Institut Mittag-Leffler 1963, pp 59-73.

Eilenberg and N. E. Steenrod, 'Foundations of Algebraic
Topology', Princeton University Press 1952 (Princeton

Mathematical Series No. 15).

. Freyd, 'Abelian Categories', Harper and Row 1964,
. Gabriel and M. Zisman, 'Calculus of Fractions and Homotopy

Theory', J. Springer 1967 (Ergebnisse series No. 35).
Godement, 'Théorie des Faisceaux', Hermann 1958 (Actualités

series 1252).

M. Greenberg, 'Lectures on Algebraic Topology', Benjamin 1967,



P. J. Hilton (1), 'An Introduction to Homotopy Theory', Cambridge
University Press 1953 (Cambridge Tracts series No. 43).

P. J. Hilton (2), 'Homotopy Theory and Duality', Gordon and
Breach, 1965.

P. J. Hilton and S. Wylie, 'Homology Theory', Cambridge Univer-
sity Press 1960.

F. Hirzebruch, 'Topological Methods in Algebraic Geometry
(3rd ed., translated), J. Springer 1966.

J. G. Hocking and G. S. Young, 'Topology', Addison-Wesley 1961.

S. T. Hu, 'Homotopy Theory', Academic Press 1959,

W. Hurewicz and H. Wallman, 'Dimension Theory', Princeton
University Press 1948 (Princeton Mathematical Series
No. 4).

D. Husemoller, 'Fibre Bundles', McGraw-Hill 1966,

S. MacLane, 'Homology', J. Springer 1963 (Grundlehren series
No. 114).

W. S. Massey, 'Algebraic Topology: An Introduction', Harcourt
Brace and World, 1967.

J. P. May, 'Simplicial Objects in Algebraic Topology', Van
Nostrand 1967 (Mathematical Studies series No. 11).

J. W. Milnor, 'Morse Theory', Princeton University Press 1963
(Annals of Mathematics Study No. 51).

B. Mitchell, 'Theory of Categories', Academic Press 1965,

R. S. Palais, 'Seminar on the Atiyah-Singer Index Theorem',
Princeton University Press 1965 (Annals of Mathematics
Study No. 57).

L. S. Pontryagin, 'Foundations of Combinatorial Topology',
Graylock Press 1952,

H. Siefert and W. Threlfall, 'Lehrbuch der Topologie', Teubner
1934,



E. H. Spanier, 'Algebraic Topology', McGraw-Hill 1966.

N. E. Steenrod, 'The Topology of Fibre Bundles', Princeton
University Press 1951 (Princeton Mathematical Series
No. 14). A

N. E. Steenrod and D. B. A. Epstein, 'Cohomology Operations’,
Princeton University Press 1962 (Annals of Mathematics
Study No. 50).

R. G. Swan, 'The Theory of Sheaves', University of Chicago
Press 1964).

E. Thomas, 'Seminar oﬁ Fibre Spaces', J. Springer 1966
(Lecture Notes in Mathematics No. 13).

H. Toda, 'Composition Methods in Homotopy Groups of Spheres’,
Princeton University Press 1962 (Annals of Mathematics
Study No. 49).

A. H. Wallace, 'Algebraic Topology', Pergamon 1957,

G. W. Whitehead, 'Homotopy Theory', The M.L. T. Press 1966.

J. H. C. Whitehead, 'The Mathematical Works of J. H. C.
Whitehead', Pergamon Press 1962,

In general, Spanier is the most useful single reference for
the central core of the subject, followed by Husemoller for those

topics which he treats.

1. A first course

I assume that most readers of this book will have had a first
course in algebraic topology. This section, then, is included for
completeness, and it can hardly escape a certain air of being
directed at the teacher rather than the student. It is hoped that

this slant diminishes in later sections.



A basic course in algebraic topology should certainly try to
present a variety of phenomena typical of the subject. The author
or lecturer should display a variety of spaces: cells, spheres,
projective spaces, classical groups and their quotient spaces,
function spaces ... . Equally, one should display a variety of
maps, that is, continuous functions between spaces. One must
give the definition of homotopy, and one can then display a variety
of phenomena or typical problems. First, we have classification
problems, for example, the classification of maps f:X — Y into
homotopy classes. (This can be illustrated by considering the case
in which X and Y are the circle Sl; the existence and properties
of the degree of a map f :S1 -t can be stated as a theorem whose
proof is deferred only a short time. One then has many applications
to plane topology: the Brouwer fixed-point theorem for the disc
Ez, the fundamental theorem of algebra, separation theorems, the
topology needed for Cauchy's theorem in complex analysis, vector
fields and critical-point theory in the plane... . But time presses
one on.) Secondly, one has extension problems; the homotopy
extension property comes in here, at least for simple pairs like the
n-cell E® and its boundary Sn'l. Thirdly, one has lifting prob-
lems; for this one must display and discuss fiberings, including
coverings. (Some authorities prefer a separate preliminary
discussion of coverings, probably in connection with the fundamental
group; but personally I believe in going straight to fiberings, with
coverings as an important special case.) One must also prove the
homotopy lifting property, at least for simple spaces like the n-cube
ot (At this point one can prove the theorem about the degree of a
map £:s' ~ Sl, by using the covering map from the real line R! to
s'. ) By analogy with the word 'fibering', one introduces 'cofiber-
ings' or 'cofibrations' in studying extension problems.



The basic facts about homotopy are given in Dugundji
chaps. 15, 18, Greenberg part1l, *Hilton (1) chap. 1, Hocking
and Young chap. 4, Hu chap. 1, and Spanier chap. 1. For classi-
fication problems, see Hu chap. 1. For extension problems, see
*Hu chap. 1 or Spanier chap. 1. For lifting problems, see *Hu
chap. 1 or Spanier chap. 2. For fiberings, see Dugundji chap 20,
*Hilton (1) chap. 5, Hu chap. 3 or Spanier chap. 2. For cofiberings,
see Spanier chap. 1.

Of course one has to face the question, what is the good
category of spaces in which to do homotopy theory? Personally, I
believe that one should introduce CW-complexes into even a basic
course; I would advocate going as far as the theorem that every
map between CW-complexes is homotopic to a cellular map. Up to
this point the material belongs almost wholly to analytic topology;
this theorem is usually proved by simplicial approximation, but it
can be proved by an ad hoc subdivision argument, subdividing the
cube by hyperplanes parallel to its faces. (Such a subdivision has
already been used to prove the homotopy lifting property. )

The material on CW-complexes may be found in Hilton (1)
chap. 7, Spanier chap. 7 or G. W. Whitehead chap. 2. The best
source, however, is probably the original paper by *J. H. C.
Whitehead, and an appropriate extract is reprinted here (see
Paper no. 1).

Next, one must certainly define absolute and relative
homotopy groups, and prove some of their logically elementary
properties (for example, the exact sequences of a pair and a fiber-
ing). Some authorities prefer a preliminary discussion of the
fundamental group nl(X), but personally I believe in saving time
here and defining the groups nn(x, A) for all n at one blow. Some
authors might advocate proceeding in even greater generality,

defining track groups, homotopy groups of maps and so forth; but
6



if these are needed they can quickly be obtained as homotopy groups
of suitable function-spaces.

The material on homotopy groups may be found in *Hilton
(1) chaps. 2, 4 and 5, Hu chaps. 4 and 5 or Spanier chap. 7. For
the more general groups, see Eckmann.

At this point, or perhaps earlier, it becomes evident that
one needs methods for effective calculation. This means homology
theory. To give the student the feel of the subject, one should
probably begin with finite simplicial homology theory. It is enough
to consider only finite simplicial complexes equipped with a given
ordering of the vertices; this cuts out a good deal of confusing
verbiage about orientations. It is necessary to give the basic
definitions and certain variations of them: relative homology,
cohomology, and the use of different coefficient groups. It is not
necessary to prove the topological invariance of finite simplicial
homology; students at this stage usually find the proof tedious and
unilluminating, and in any case the result follows from later
theorems.

The material on finite simplicial homology may be found in
the Séminaire H. Cartan 1948/49 (2nd ed.) exposés 1-4, *Hilton
and Wylie chaps. 2 and 5, Hocking and Young chaps. 6 and 7 or
Spanier chap. 4.

Next one must introduce the Eilenberg-Steenrod axioms, set
up singular homology theory, and prove that it satisfies the axioms.
Here it is open to argument whether one should set up both the theory
based on simplexes and the theory based on cubes, or whether one
should use only simplexes. The arguments in favour of cubes are
as follows. First, it may be held that the student gains from seeing
that there are at least two ways of setting up a homology theory, and
that any way will do providing that it works. Secondly, there are



various points at which is is marginally easier or more convenient
to work with cubes rather than simplexes, and at such points it is
pleasant to be able to mention cubes. (Such points arise, for
example, in passing from a geometrical homotopy to a chain
homotopy, and in proving the Hurewicz isomorphism theorem. )
Thirdly, the cubical theory is used in various classical papers which
the student might want to read, such as Serre's thesis (see §5).
The arguments against cubes are as follows. Against the second
and third points, it appears to be true that by using extra effort,
or later methods, it is possible to avoid the use of cubes at all
points where they are easier or were used by classical authors.
And therefore, against the first point, why spend the time and risk
confusing the issue? Personally, I still like cubes. In any case,
at this stage it is certainly not necessary to prove the equivalence
of the two singular theories, or that the singular theories agree
with the finite simplicial theory on finite simplicial complexes;
both results follow from later theorems. However, one should
carry the work far enough to compute the homology of a few simple
spaces such as spheres.

There are many good accounts available of this material.
They include Eilenberg and Steenrod chaps 1 and 7, *Greenberg
part 2, Hilton and Wylie chap. 8, Spanier chap. 4 and Wallace
chaps. 5, 6, 7 and 8. The original paper by S. Eilenberg ('Singular
homology theory', Annals of Mathematics 45 (1944), 407-447) is
as pleasant to read as any, and is recommended; but with the other
sources available it would be hard to justify reprinting 40 pages. 1
have however found space for the original paper by Eilenberg and
Steenrod (Paper no. 2) which is both elegant and lucid.

The final topic which should be included in a first course is
the Barewicz isomorphism theorem. Technically, of course, it is



possible to delay the proof until further machinery is developed and
one can give the painless proof due to Serre (see §8). Personally

I prefer to give a fairly elementary proof at this stage. Such a proof
has two main pillars: the additivity lemma, and the result that the
homology of an n-connected space X can be defined in terms of
singular simplexes or cubes with their n-faces at the base-point.

H one uses cubes, the additivity lemma can be proved fairly easily
by direct geometrical construction; alternatively, one can prove
everything at once by induction over the dimension. If one uses
simplexes, it is still possible to prove the additivity lemma by
direct geometrical construction, but the proof is unpleasant, and
in my opinion the proof by induction is preferable. The homology
result is straightforward, but at this stage probably involves an
irreducible amount of work, which is worse for cubes because of
normalisation. (The work can be made easier if one has available
the geometrical realisation of the total singular complex of X -
see §3. This singular complex may be either simplicial or cubical;
its 'realisation’ is a CW-complex possessing a map to X, and this
map can be deformed in the required way by standard theorems.
However, one would not expect this 'realisation’' to be available at
this stage.)

Proofs of the Hurewicz isomorphism theorem are given in
*Spanier chap. 7 and G. W. Whitehead chap. 2.

This completes the material appropriate to a basiccourse,
except that some authorities would include some of the material
which I have collected for convenience in §4, From this point on
there is much more freedom about the order in which the material
can be taken. Infact, the ordering of the sections below does not
reflect the order in which I hope a student would learn the subject.
Sections 6 and 7 are placed where they are because of their close



relation with §5; but I would hope that a student would learn some-

thing from §§10 and 12 at an early stage.

2. Categories and functors

The student cannot escape learning about these as he goes
along. Thus no special reading is necessary. If references are
required, see Eilenberg and Steenrod chap. 4, Freyd, MacLane
chap. I, Mitchell or *Spanier chap. 1.

3. Semi-simplicial complexes

The student should know the basic definitions; these may be
found in Hilton and Wylie pp 358-359, Hu pp 140-142 or *MacLane
pp 233-236. (The theory is taken rather further in the Séminaire
H. Cartan, 1956/57, exposé 1.) These complexes are useful in
formalising some of the constructions and proofs about singular
homology. They are also valuable in homological algebra; here
they allow one to start from strictly algebraic or combinatorial
foundations, and yet obtain objects to which one can apply all the
techniques of algebraic topology (see for example André).
Personally, I am not too much impressed by the arguments that
they provide a good category in which to do homotopy theory,
although they have been much used in discussing Postnikov systems
(see §10). The use of these complexes seems most prafitable when
one can consider semi-simplicial complexes with a strong algebraic
structure. This subject is well represented by Milnor's paper 'On
the construction FK' reprinted here as Paper no. 10. See also
Bousfield, Curtis, Kan, Quillen, Rector and Schlesinger, 'The
mod p lower central series and the Adams spectral sequence’,

Tapalogy 5 (1966), 331-342,

10



If the student wishes to study semi-simplicial complexes, I

would suggest the book by *J. P. May.
4, Ordinary homology and cohomology

The student will certainly require a working knowledge of
ordinary homology and cohomology. Here I am taking for granted
the standard 'diagram-chasing' material such as the Mayer-
Vietoris sequence, the Five Lemma etc., for which all authors
follow Eilenberg and Steenrod chap. 1. But the student should also
cover the following: (a) direct and inverse limits, (b) the universal
coefficient theorem, with enough homological algebra to understand
it, (c) the Eilenberg-Zilber theorem, (d) the Kunneth theorem,

(e) all relevant product operations, such as Kronecker products,
cup products, cap products, cross products, Pontryagin products
and slant products, (f) the Bockstein operations, (g) other primary
operations such as the Steenrod squares and reduced powers, and
(h) some introduction to secondary operations such as the Massey
product.

One can find (a) in Eilenberg and Steenrod chap. 8 or
*Spanier Introduction (although a little more generality is sometimes
useful). One can find (b) and (d) in MacLane chaps. 3 and 5. One
can find (b) to (f) inclusive in Hilton and Wylie chaps. 4, 5, 8 and 9
or *Spanier chaps. 5 and 6 (except that not all the products appear
explicitly in both). One can find (h) in the Seminaire H. Cartan,
1958/59 exposé 13, in Spanier, 'Secondary operations on mappings
and cohomology', Annals of Math. 75 (1962), 260-282, or in Adams,
'On the non-existence of elements of Hopf invariant one', Annals of
Math. 72 (1960) 20-104, especially pp 21-24, 52-74. As for (g),
the Steenrod operations (which link up with §§7 and 10 below) can
be found in Steenrod and Epstein; however, many readers of this
book will prefer to delete all references to 'regular cell complexes'

11



and instead to define Steenrod operations for semi-simplicial
complexes, using the method of acyclic models; for the Steenrod
squares this may be found in Spanier chap. 5.

This of course brings one to the method of acyclic models.
This method can often be bypassed by giving explicit formulae,
but it is convenient, conceptual and illuminating. It may be found
in Hilton and Wylie chap. 8 or in *Spanier chap. 4. Unfortunately,
Hilton and Wylie seem to neglect to show that normalised cubical
chains are representable - a crucial point; I understand that this
omission is to be repaired in their second edition. (Spanier by-
passes the difficulty by considering only unnormalised simplicial
chains.) The original paper (S. Eilenberg and S. MacLane,
'Acyclic models', American Jour. Math. 79 (1953), 189-199) is
not easy for a beginner to read. The best treatment is due to
A. Dold, S. MacLane and U. Oberst, in 'Reports of the Midwest
Category Seminar', J. Springer 1967 (Lecture Notes in Mathematics
series No. 47).

The student will also need to know about spectral sequences.
Here there is of course a difference of opinion; some seek to avoid
the use of spectral sequences whenever possible, while others seek
to introduce them as soon as possible and use them as a heavy
hammer to force out subsequent theorems. Personally I incline to
the latter school. For convenience, however, I have given spectral
sequences a separate section of their own (see §5).

Most authors would add two further topics to this section.
Some knowledge of fixed-point theorems is certainly desirable for
one's general education, but surprisingly little of the rest of
algebraic topology depends on it. The Brouwer fixed-point theorem
may be treated as an example as soon as one has set up a homology
theory; on this point all authors follow Eilenberg and Steenrod

12



chap. 11. It is probably good to know something about the Lefschetz
fixed-point formula; this may be found in Hilton and Wylie chap. 5
appendix 1 or *Spanier chap. 4.

It is even more desirable for one's general education to know
something of the homology theory of manifolds (Poincaré duality,
Alexander-Lefschetz duality). Indeed, for a student who proposes
to work on manifolds this is essential. Treatments may be found
in Greenberg parts 3 and 4, Husemoller chap. 17 and *Spanier
chap. 6. The homology theory of manifolds links up with the
homology theory of vector-bundles (see §11) via the tangent bundle
(or microbundle) of a manifold and the Thom isomorphism. For
the Thom isomorphism, see Husemoller chap. 16. Unfortunately,
it is clear by now that for an idealistic treatment, one should take
the whole of this subject and do it for generalised homology and
cohomology theories (see $12) rather than for ordinary ones. The
foundation paper in this direction is G. W. Whitehead, 'Generalised
homology theories', Trans. American Math. Soc. 102 (1962), 227-
283. Unfortunately, it does not do the whole of what I have just
asked; the idealistic treatment parallels more closely that given
in Spanier for the case of ordinary homology. A summary of some
of the material in Whitehead's important paper, together with some
additional material, is given here as Paper no. 13,

5. Spectral sequences

A spectral sequence is an algebraic gadget like an exact
sequence, but more complicated. In particular, it contains groups
Eg’ 9 for r= 2, 3, ..., ©. Like an exact sequence, it does not
provide a guarantee that one can carry out any required calculation
effectively, but the experts succeed with it more often than not.

13



One may approach the subject as follows. Suppose given a
space X filtered by a sequence (either increasing or decreasing)
of subspaces Xn. Suppose given a functor (such as homology,
cohomology, or homotopy) which assigns to each pair Xn, Xm
an exact sequence, subject to various axioms. Then one has a
whole maze of interlocking exact sequences, and from this one can
distil out the algebraic gadget called a spectral sequence.

This 'distillation’ can be performed in two ways, which I
will call the 'explicit' and the 'implicit'. There is no essential
difference. To proceed 'explicitly’' one simply writes down an
explicit definition for the group EI;’ % in terms of the given data,
and similarly for anything else one wishes to define. This method
is well represented by the exposé of Eilenberg, reprinted here as
Paper no. 3. (Or see Cartan and Eilenberg pp 333-336.) The
'implicit' method is the method of 'exact couples’. An exact
couple is an algebraic gadget abstracted from a 'maze of inter-
locking exact sequences’, as described above. One explains how to
pass from an exact couple to its 'derived exact couple', and by
iteration one obtains the whole spectral sequence. The advantage
of the method is its elegance. The disadvantage of the method is
that at any time one may want to have explicit formulae for the
groups Ef’q, either to bolster one's confidence or to perform
particular arguments. Therefore it seems well to supplement the
method of 'derived couples' with some explicit formulae. But given
the explicit formulae, one can dispense with the derived couples,
except perhaps for insight and guidance. The method of exact
couples 18 due to Massey, and an extract from his work is reprinted
here as Paper no. 4.

The first example and application of spectral sequences is
certainly the theorem (due to Serre) that a fibering gives rise to

14



spectral sequences in (singular) homology and cohomology. More
precisely, suppose given a fibering with fibre F, total space E
and base B; then there is a spectral sequence with

EI;’ 9 =~ Hp(B; Hq(F)) and such that the terms EI:; 9 with ptq=n
form a series of composition-quotients for Hn(E).

This theorem may be proved in two ways. On the one hand
one may give a direct, explicit construction and proof, following
J. -P. Serre, 'Homologie singuliére des espaces fibrés', Annals
of Math., 54 (1951), 425-505. This is advantageous for certain
later work, such as Kudo's proof of Kudo's transgression theorem
(see §7). On the other hand, it appears to be true that by using
later methods one can always avoid appealing to the details of
Serre's construction. A modern proof along Serre's lines is given
by A. Dress, 'Zur Specktralsequenz von Fazerungen', Inventiones
Math. 3 (1967), 172-178. (See also André; but readers who are
only interested in this proof, rather than in homological algebra,
may find that André asks them to swallow rather a lot of category-
theory first.)

The second way goes back to Massey. One may suppose
without loss of generality that the base B is a CW-complex with
skeletons B". Let p:E — B be the projection. Then one can
filter E by considering the subspaces p-an, and one obtains the
situation considered at the beginning of this section. A treatment
along these lines can be combined with a treatment of certain stan-
dard results on generalised cohomology theories (see §12, and the
paper by Dold reprinted here as Paper no. 14). These results need
to be known anyway, and a proof along these lines can be fairly short
and conceptual. I feel that this approach can be recommended to
the student.
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Discussions of spectral theory without complete proofs are
given in Hilton and Wylie chap. 10, *MacLane chap. 11 and
G. W. Whitehead chap. 3. A proof closely following Serre is given
in Hu chaps. 8 and 9. Versions of the second proof mentioned
above are given in the Séminaire H. Cartan 3 (1950/51) exposé 9,
in Dold and in *Spanier chap. 9 pp 446-481.

6. H*(BG)

An especially important application of spectral sequences to
fiberings arises in the case when the total space E is contractible,
In some cases we know the homology or cohomology groups of B
and wish to infer those of F. This arises, for example, when F
is the loop-space of B (see Spanier p 37). In some cases we know
the homology or cohomology groups of F and wish to compute those
of B. This arises when F is a Lie group G and B is its classi-
fying space BG (see §11). It also arises when F is an Eilenberg-
MacLane space K(m,n) and B is an Eilenberg-MacLane space
K(m,ntl) (see §7).

The first theorems in this subject are due to A. Borel,

'Sur la cohomologie des espaces fibrés principaux et des espaces
homogenes de groupes de Lie compacts', Annals of Math. 57 (1953),
pp 115-207. (See also the book by Borel.) One version of Borel's
first theorem states that if H,(F) is an exterior algebra (under

the Pontryagin product), and E is contractible, as always in this
section, then H*(B) is a polynomial algebra. Moreover, the
suspension map
N

H'(B) = H'(E,F) i— H' " (F)
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yields a good correspondence between the generators in B and F.
In Borel's second theorem one supposes given elements in H*(B)
whose suspensions behave well in F, and one needs correspondingly
less data in F.

Borel's original paper may be found hard to read, and it is
not necessary to do so as there are later methods available, The
foundation paper in this direction, which introduced homological
algebra into the subject, is perhaps J. C. Moore, 'Algébre homo-
logique et homologie des espaces classifiants’, Séminaire H. Cartan
12 (1959/60) exposé 7. So far as getting from H(B) to H(F) goes,
the results were written up by S. Eilenberg and J. C. Moore,
'Homology and fibrations I', Commentarii Math. Helvetici 40 (1966),
201-236. For getting from H(F) to H(B), I recommend the paper
by M. Rothenberg and N. E. Steenrod, reprinted here as no. 5.

7. Eilenberg-MacLane spaces and the Steenrod algebra

An Eilenberg-MacLane space is a space whose homotopy
groups are all zero except for one; say nn(X) = G, nr(X) =0
for r #n. We then write X = K(G,n). An excellent account of
Eilenberg-MacLane spaces is given by J. -P. Serre, Séminaire
H. Cartan 7 (1954/55) exposé 1. Their importance is twofold.
First, they are important in homotopy theory (see §10). Secondly,
they are closely linked with the study of cohomology operations.
To be more precise, the cohomology of an Eilenberg-MacLane
space X, as above, depends on n and G, and there is a (1-1)
correspondence between Hm(X;G') and the set of all natural
cohomology operations from Hn(Y;G) to Hm(Y;G'). On this point,
see the paper by *Serre reprinted here as no. 6. This is the paper
in which Serre calculated the cohomology of Eilenberg-MacLane

spaces with Z2 coefficients. (It is important to know the cohomol-
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ogy of Eilenberg-MacLane spaces for both the applications mentioned
above.) The cohomology with Zp coefficients was first calculated
by Cartan; see the Séminaire H. Cartan 7 (1954/55). This calcula-
tion can also be done by a version of Serre's method; see M. M.
Postnikov, 'On Cartan's theorem', Russian Mathematical Surveys
21 (1966), 25-36. This method needs a lemma about the way
Steenrod operations behave in the spectral sequence of a fibering.
This lemma was formulated by A. Borel (see W. S. Massey, 'Some
problems in algebraic topology and the theory of fibre bundles’,
Annals of Math., 62 (1955), 331). It was proved by T. Kudo, 'A
transgression theorem', Mem. Fac. Sci. Kyusyu Univ. 9 (1956),
79-81. Fortunately, it is now possible to do the calculations a
third way, following Moore, Rothenberg and Steenrod (see §6).

The mod p Steenrod algebra A is by definition the set of
all natural stable operations from H*(Y;Zp) to H*(Y;Z p); the
product is given by composition of operations. (This definition
extends immediately to generalised cohomology theories - see
§12.) The work of Serre and Cartan mentioned above issues in a
determination of the structure of A. In order to state the results
conceptually, it is convenient to begin by remarking that A is a
Hopf algebra (see §11). In fact, the cup-product operation corres-

ponds to a map
M ( py ) (Z ) (Z n m)

the induced map of cohomology is independent of n and m ina
suitable range of dimensions, and defines a coproduct map

pu*:A - A ® A, (This account generalises, too.) One can now
introduce the dual Hopf algebra A* (corresponding to the homology
of Eilonberg-MacLane spaces rather than their cohomology). One
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can introduce explicit elements in the dual A*, and so describe
completely the structure of A* and A. All this is due to

*J, Milnor, 'The Steenrod algebra and its dual', Annals of Math.
67 (1958), 150-171; this paper is highly recommended.

For the beginner, a sufficient introduction to the above for
the case p = 2 is given in Adams chap. 2. There is a purely
algebraic account of the Steenrod algebra in Steenrod and Epstein;
but personally I prefer treatments in which the conceptual back-
ground in algebraic topology is placed first, while explicit genera-
tors and relations for the Steenrod algebra emerge as a result of
calculation.

8. Serre's theory of classes of abelian groups (C-theory)

These results are of very general use, and all students of
algebraic topology should certainly study them. The central
theorems are the absolute Hurewicz isomorphism mod C, the
relative Hurewicz isomorphism mod C, and the J. H. C. Whitehead
theorem mod C. This material may be found in Hu chap. 10 or
*Spanier chap. 9. The original paper by J. -P. Serre ('Groupes
d'homotopie et classes de groupes abeliens’', Annals of Math. 58
(1953), 258-294) is most elegant, and I recommend it highly, but
with the other sources available it would be hard to justify reprin-
ting it.

9. Obstruction theory

The idea of an obstruction is a fundamental one, and the
student should get some feeling for it. It can be approached in a
comparatively direct and elementary way; this is done in *Hilton
and Wylie chap. 7, Hu chap. 6, Steenrod part 3 and G. W. White-
head chap. 2. Unfortunately, this method becomes tedious if one

19



really wishes to talk about higher obstructions. One can import a
helpful geometric framework by introducing Moore-Postnikov
factorisations, as is done in Spanier chap. 8. This approach would
come more naturally after a student has met Postnikov systems and
the method of killing homotopy groups in homotopy theory (see §10).
Finally, one can achieve much the same ends by constructions
involving generalised cohomology theories (see §12) and spectral
sequences. See the book by Dold.

10. Homotopy theory

Here again we meet the question of the correct category in
which to do homotopy theory, and at this point I give two further
references: J. Milnor, 'On spaces having the homotopy type of a
CW-complex', Trans. Amer. Math. Soc. 90 (1959), 272-280, and
N. E. Steenrod, 'A convenient category of topological spaces’,
Michigan Math. Jour. 14 (1967), 133-152.

One can distinguish three strands in homotopy theory;
suspension theory, explicit geometrical constructions such as
Whitehead products, and the method of killing homotopy groups.
The non-specialist, who wishes to apply topology to other topics
such as smooth manifolds, will need to know the basic theorems of
suspension-theory, so as to be able to distinguish phenomena which
are 'stable' (see below) from those which are not; he should also
be aware of the existence of the most usual geometrical construc-
tions, and of the existence of the method of killing homotopy groups.
The specialist will need to go further; this is one of the densest
tracts of jungle we have to survey.

Let X and Y be (say) two CW-complexes with base-points,
and let [X, Y] be the set of homotopy classes of maps (preserving

the base-point) from X to Y. The suspension construction
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(Spanier p. 41) constructs from each space X its suspension SX,
and defines a function S:[S, Y]~ [SX,SY]. The first, 'crude’
theorem in suspension-theory states that this function is a (1-1)
correspondence under suitable assumptions on X and Y. For
example (taking X = Sq, Y= Sn) suspension defines a homomor-

n+1) between the homotopy groups of

phism S:nq(Sn) - 1rq+1(s
spheres, and the theorem asserts that this homomorphism is an
isomorphism if q < 2n-1. Phenomena which are independent of a
dimensional parameter, in the same way that the structure of
nn+r(sn) is independent of n for n> r + 1, are called 'stable’.
(It is unwise to attempt too rigid a definition of the word 'stable’,
because of the variety of the phenomena to which it is applied;

for example, one says that the Steenrod squares

nt+i

sa'm(x;z,) ~ " (x;2,)

are 'stable'.)

The most illuminating proof of the suspension theorem
mentioned above proceeds by considering function-spaces. I Z
is a space with base-point, let Z be the loop-space of Z
(Spanier p. 37). Then one has an embedding i:Y = 2SY and one
obtains the theorem by studying this embedding. For this purpose
spectral sequences are useful but not absolutely essential. See
*Spanier chap. 8; the special case Y = s" is also given in the
Séminaire H. Cartan 1958/59 exposés 5, 6, Hilton and Wylie chap.
10, Hu chap. 11 and G. W. Whitehead §3. 8. It is clear that the
non-specialist will need to go as far as this; it is not clear that he
will need to go any further.

So far we have been discussing essentially the case of
absolute homotopy groups. The work can be put in a more general
setting by introducing triad homotopy groups; these allow one to
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state the main 'crude' suspension theorem in a form which allows
one to make not only deductions about absolute homotopy groups,
but also deductions about relative homotopy groups, like the result
given in Spanier p. 484 theorem 5. We thus reach the triad
connectivity theorem. This theorem should be stated and proved

in the context of Serre's C-theory (see §8). It should also be stated
so as to give the structure of the first triad group which is not
zero; for this purpose one needs a geometrical construction (the
generalised Whitehead product). The extract from my own lecture-
notes (Paper no. 7) is included to cover this topic.

Most students will not need to pursue the generalisation
from triads to n-ads.

The suspension theorems which we have considered so far
apply to a wide class of spaces, but give results only for a limited
range of dimensions. There are further theorems in the same
spirit. For example, consider the EHP sequence of G. W. White-
head, 'On the Freudenthal theorems', Annals of Math. 57 (1953),
209-228. (The statement is reprinted here as Paper no. 8.) This
sequence can be formulated for a general space X. By contrast,
sophisticated suspension theorems apply only to selected spaces,
but give results for all dimensions. For example, a celebrated
result of James may be viewed as asserting that if n is odd, then
there is a fibering F =~ E =~ B in which F, E and B are (up to
weak homotopy type) Sn, os" +1 and 982n+1. If we take the exact
homotopy sequence of this fibering, we obtain an exact sequence
valid in all dimensions, in which each group is a homotopy group
of Sn, Sn+1 or Sznﬂ. James' work appeared in the Annals of
Math. 62 (1955), 170-197, 63 (1956), 191-247 and 63 (1956), 407-
429, and a brief extract is reprinted here as Paper no. 9. There
are further results of James and Toda in this direction. The

22



exploitation of such exact sequences in computing homotopy groups
of spheres usually involves geometrical constructions, such as the
Toda bracket (see below); it may involve other methods as well.

For 'sophisticated’ suspension-theory, see Toda chaps. 2,
13,

It will be observed that the exact sequence of 'sophisticated'
suspension-theory involve not only the suspension homomorphism
E, but also two other homomorphisms, say H and P, so that
ImE = Ker H and Ker H=Im P. One needs to know the behaviour
of both H and P with respect to suitable geometrical constructions
see Toda chaps. 2, 13. The homomorphism H is usually described
as a 'Hopf invariant'; for a discussion of the different possible
definitions of '"Hopf invariants' and the relations between them,
see M. G. Barratt, Reports of Seminar in Topology, University
of Chicago, 1957, part1 SIII (mimeographed notes). The homo-
morphism P is related to the Whitehead product (see below).

Next we come to explicit geometrical construction. The
following are standard. (a) Suspension (see above). (b) Compo-
sition; also secondary (and higher) compositions, that is, 'toric
constructions' or'Toda brackets'. (c) Whitehead products, together
with their generalisations, relative and generalised Whitehead
products. (d) Last and perhaps least important, the Hopf construc-
tion.

For (b) see Toda chap. 1, or Spanier, 'Secondary operations
on mappings and cohomology’, Annals of Math. 75 (1962), 260-382,
For (c) see Hilton (1) p. 92, Hu pp 138-139, Spanier pp 419-420 or
the extract from my lecture-notes given as Paper no. 7. For (d)
see G. W. Whitehead, 'On the homotopy groups of spheres and
rotation groups', Annals of Math. 43 (1942), 634-640.
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Besides the definitions of these constructions, one also has
to know various identities which they satisfy. Here the method of
the 'universal example' is often useful. Thus, if we have to
consider operations defined on two variables a € np(X),

B € nq(X) it is sufficient to consider the case in which X is the
'wedge sum' or union with one point in common, sP v Sq, while a
and B8 are the injections of sP and Sq. The homotopy groups
1rr(sp v Sq) were calculated (in terms of those spheres) by

P. J. Hilton, 'On the homotopy groups of the union of spheres’,
Jour. London Math. Soc. 30 (1955), 154-172. An exposition of all
this is given by Serre in the Séminaire H. Cartan 1954/55, exposé
20. Hilton's work was generalised by Milnor, whose paper 'On the
construction FK' is reprinted here as Paper no. 10. The work of
Hilton and Milnor sheds light on the rather complicated formula
which exists for expanding the composite (@ + B)y ('left distribu-
tive law'). For the most illuminating work on the left distributive
law, see J. M. Boardman and B. Steer, 'On Hopf invariants’,
Commentarii Math. Helvetici 42 (1967), 180-221.

Next we come to the method of killing homotopy groups. We
observe that any space X can be approximated by an interated
fibering, in which the factors are Eilenberg-MacLane spaces
whose homotopy groups are those of X. The spaces and maps
occurring in these fiberings are often called the ' Postnikov decompo-
sition' of X. If we start by knowing the homotopy groups of X,
and sufficiently much about the fiberings in its Postnikov decompo-
sition, we can in principle obtain information about the homology
and cohomology of X. In practice, however, we argue in the
reverse direction; we begin with information about the homology
and cohomology of X, and deduce information about its homotopy
groups,
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The construction of the Postnikov decomposition is given in
Hilton (1) pp 67-68, Hu pp 155-159 and Spanier pp 437-444. Of
these, Hilton is the shortest and Spanier the most general. See
also the passage from one of my own papers reprinted as no. 11.
To appreciate the object of the exercise and get the flavour of the
homological calculations, see the original notes by Cartan and Serre
reprinted here as Paper no. 12.

A reformulation of the method of killing homotopy groups,
so far as it applies to stable homotopy theory, has been given by
myself. It is sometimes called the 'Adams spectral sequence’'.
Accounts may be found in my paper 'On the structure and applica-
tions of the Steenrod algebra', Commentarii Math. Helvetici 52
(1958), 180-214, in the Séminaire H. Cartan 1958/59, exposés 18,
19, or in Adams chap. 4. An application of this method may be

seen in Paper no. 23.

11. Fibre bundles and topology of groups

Under this heading I include fibre-bundles, their character-
istic classes, the topology of groups and their classifying spaces,
and the study of H-spaces and Hopf algebras. It will be clear that
this section comes near to overlapping with the companion volume
on differential topology; but most of it comes within the terms of
reference of this volume. For example, even if one were a narrow-
minded algebraic topologist, one might wish to work on K-theory or
cobordism (considered as a generalised cohomology theory), and
one would then need to know the contents of this section.

The student should certainly know the definition of a fibre-
bundle with structural group G. This may be found in *Husemoller
chaps. 2-6 or Steenrod part I. It is almost certainly good to avoid
assuming that the action of the structural group G on the fibre F
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is faithful. In fact, if one contemplates the existence of fibrewise-
linear maps between vector bundles with fibres of different
dimensions, one sees that it is probably good to replace the struc-
tural group G by a suitable category, for example, the category
of linear maps between finite-dimensional vector spaces; but this
is not yet generally accepted. One has also to know something of
the theory of fibre-bundles, including the classification theorem.
Special attention should be given to vector-bundles.

This material may be found in *Husemoller chaps. 2-6 or
Steenrod parts I, II.

The student should know the homology and cohomology (with
the usual coefficient groups) of the classical groups O(n), U(n)
and Sp(n) and their classifying spaces. The homology of the
classical groups is computed in Steenrod and Epstein chap. 4
(although I personally would prefer to make more use of spectral
sequences). Alternatively, see Borel chap. 4. The method of
inferring the cohomology of the classifying space BG from that of
the group G has been discussed in 86 above. The material on
classifying spaces includes a knowledge of the nature and properties
of various characteristic classes, namely the Stiefel- Whitney
classes, Pontryagin classes, Euler classes, Chern classes and
symplectic Pontryagin classes. Topologists still hope to see a
book by Milnor on this subject; meanwhile, one can find much of
this material in Husemoller chaps. 16, 18. For all this, see also
the useful survey article by A. Borel, '"Topology of Lie groups and
characteristic classes', Bull. Amer. Math. Soc. 61 (1955), 397-
432,

There is a link-up between the study of vector-bundles and
homotopy theory, via Thom complexes. The definition of a Thom
complex may be found in Husemoller chap. 15; for further study,
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see M. F. Atiyah, 'Thom complexes', Proc. London Math. Soc.
11 (1961), 291-310, which is highly recommended.

An H-space is a generalisation of a topological group; the
definition may be found in Dugundji chap. 19, Hocking and Young
chap. 4, Hu chap. 3, Husemoller chap. 1, *Spanier chap. 1 and
G. W. Whitehead part I. The concept of a Hopf algebra is abstracted
from the homology or cohomology (with suitable coefficients) of an
H-space; see the Séminaire H. Cartan 1959/60 exposé 2 or Spanier
PP 267-269. It is useful in various places in algebraic topology.
The standard reference is J. W. Milnor and J. C. Moore, 'On
the structure of Hopf algebras', Annals of Math. 81 (1965), 211-
264; this paper is recommended, but it is perhaps too long to

justify reprinting it.

12, Generalised cohomology theories

A generalised cohomology theory is a contravariant functor
satisfying the first six axioms of Eilenberg and Steenrod (see §1).
Several such functors have recently become important in algebraic
topology; in particular, the K-theory of Grothendieck, Atiyah and
Hirzebruch, and various functors provided by cobordism theory
(see below). For a survey article which says something about this,
see Eckmann.

From the axioms one can deduce various elementary con-
sequences, such as the Mayer-Vietoris sequence (see §1).

The next theorem in the subject is E. H. Brown's represen-
tability theorem; this gives necessary and sufficient conditions
under which a contravariant functor of X has the form [X, Y]

(see 810) for some fixed Y. A treatment may be found in Spanier
pp 406-412; or see E. H, Brown, 'Cohomology theories', Annals
of Math. 75 (1962), 467-484, It follows that there is a close relation
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between generalised cohomology theory and homotopy theory, so
far as the latter studies the sets [X, Y].

There are also generalised homology theories; for example
stable homotopy provides such a theory. For the relation between
homology and cohomology theories, see G. W. Whitehead,
'Generalised homology theories', Trans. Amer. Math. Soc. 102
(1962), 227-283, or Paper no. 13,

We now come to a theorem which is central to the subject.
Suppose given a generalised cohomology functor K*. (The case
of homology is similar.) Suppose given also a space X having a
monotone sequence (either increasing or decreasing) of subspaces
Xn. By applying the functor K*, we obtain a spectral sequence
(see 85). If the spectral sequence converges, it does so towards
K*(X).

If we now specialise to the case in which X is a CW-
complex and Xn is its n-skeleton, then we can calculate the E2
term of this spectral sequence; this is the ordinary cohomology
of X, with coefficients in the generalised cohomology K* of a
point, The result becomes a little more explicit f X is a finite
simplicial complex; in this case 'ordinary cohomology' is to be
taken in the sense of finite simplicial cohomology. In particular,
we obtain a proof that any 'ordinary cohomology theory, if applied
to a finite simplicial complex, gives the same result as finite
simplicial cohomology (with the same coefficients). Hence, in
particular, finite simplicial cohomology is a topological invariant.

For this calculation of the E2 term, see the paper by
Atiyah and Hirzebruch reprinted here as no. 19. (They only con-
sider a particular theory K*, but their argument is a general one.)
Alternatively, see the paper by Dold reprinted here as no. 14. For
the sake of history one should perhaps record that the result was
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a folk-theorem long before; I first heard it from G. W. Whitehead.

The theory above is often applied to calculate generalised
cohomology groups. It is clear that it also has much in common
with Massey's construction of the spectral sequence of a fibering
(see §5 and Paper no. 14). It is also closely related to the theory
which arises when we replace K*(X) by [X,Y]; in this case we
(essentially) recover obstruction-theory for maps of X into Y
(at least for suitable Y). See the lecture-notes by Dold in the
main bibliography.

We have mentioned the question of the convergence of the
spectral sequence when X is an infinite complex. In order to
study this question, it is necessary to know about Liml, the
derived functor of the inverse-limit functor. See the paper by
Milnor reprinted here as no. 15. It is also necessary to know
conditions under which Lim! = 0; see extracts from Atiyah and
Anderson reprinted here as Paper nos. 16, 17,

It is also advisable to know something about products in
generalised homology and cohomology theories. See Paper no. 13,

An important application of generalised cohomology theories
is to the theorems of 'generalised Riemann-Roch type'. On this
subject I have selected the exposition by Dyer reprinted here as
Paper no. 18.

We now turn to particular cohomology functors which have
been found useful. The first is K-theory. The standard reference
is the paper by Atiyah and Hirzebruch reprinted here as no. 19;
but Husemoller part 2 is also useful and perhaps more inclusive.
It may be felt that now that a book by *Atiyah has appeared, it
takes precedence over other sources. The lectures by Hirzebruch
reprinted here as Paper no. 20 are also recommended. In order
to set up K-theory, one needs the Bott isomorphism theorem.
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Various proofs have been given. For the complex case the

standard reference is probably M. F. Atiyah and R. Bott, 'On

the periodicity theorem for complex vector bundles', Acta
Mathematica 112 (1964), 229-247; this proof may be found in
Husemoller chap. 10. For the real case I recommend M. F. Atiyah,
'K-theory and reality', Quart. Jour. Math. 17 (1966), 367-386;

this paper is reprinted in his book.

In K-theory, one can introduce cohomology operations \Ifk;
see J. F. Adams, 'Vector fields on spheres', Annals of Math, 75
(1962), 603-632, Atiyah p. 135 or Husemoller chap. 12. A summary
of my paper is reprinted here as no. 21. For some sample applica-
tions of K-theory, see J. F. Adams (loc. cit.) or Husemoller chap.
15; J. F. Adams and M. F. Atiyah, 'K-theory and the Hopf
invariant', Quart. Jour. Math. 17 (1966), 31-38, Atiyah p. 137
or Husemoller chap. 14; or J. F. Adams, 'On the groups J(X).
IV', Topology 5 (1966), 21-71. Extracts from the last are reprinted
here as Paper no. 22,

The theory of cobordism gives rise to various cohomology
functors of interest. The most accessible account is in the two
books by Conner and Floyd, which give the references of historic
importance. A summary on complex cobordism is given as Paper
no. 23. Good information about the algebra of cohomology opera-
tions on complex cobordism has recently been obtained by S. P.
Novikov, 'The methods of algebraic topology from the viewpoint of
cobordism theories’, Izvestiya Akademii Nauk SSSR (Ser. Mat.)

31 (1967), 855-951.

13, Final touches

Finally, a student's course should include some survey of

the current state of the art, and some reading of one or two pieces
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of current work which are either elegant, or stimulating, or serve
in some way to give the feel of research. The narrower purpose
might perhaps be served by some of the references in the last two
paragraphs of §12. For the wider purpose, I have no hesitation in
recommending S. P. Novikov's survey, reprinted here as Paper
no., 24. See also the list of problems published by R. Lashof,
'"Problems in differential and algebraic topology', Annals of Math,
81 (1965), 565-591 and the comments on it by S. P. Novikov, Uspeki
Mat. Nauk 20 (1965), 147-170 (= Russian Mathematical Surveys 20
(1965), 145-167).

Before the student writes anything himself, he should soak
himself in papers which are well written. For this purpose I would
recommend practically anything written by J. -P. Serreor J. W.

Milnor.
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The first extract is from J. H. C. Whitehead's fundamental
paper on CW-complexes, which are a most useful class of spaces
in which to do homotopy theory. There is always an analogy between
what we can do topologically with a space, and what we can do
algebraically with its chain groups, etec.; in this class of spaces the
analogy reaches its maximum strength. The main prerequisite for
reading this extract is a sound knowledge of general topology. On
p. 40 Whitehead also uses the homotopy extension property for
the pair E", s"!. Whitehead also makes two references to his
earlier papers; the first, on p. 40, is to a geometrical construc-
tion which the reader can supply for himself; the second, on p. 42,
is to the subdivision argument referred to in §1 above. At the foot
of p. 41 Whitehead uses the word 'cellular’'; amap f:X ~-Y
between CW-complexes is said to be cellular if f(Xn) c Y" for
each n, where x" is as defined on p. 33 .
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1

COMBINATORIAL HOMOTOPY

J. H. C. Whitehead

4. Cell complexes.'® By a cell complex, K, or simply a complex, we
mean a Hausdorff space, which is the union of disjoint (open) cells,
to be denoted by e, e*, €}, etc., subject to the following condition. The
closure, &, of each n-cell, e*& K, shall be the image of a fixed n-sim-
plex, g™, in a map, f:o"—é", such that

(4.1) (a) flo"—dc™ is a homeomorphism onto e*,

(b) de*C K™, where de=fdo™=¢e"—e™ and K™ is the (n—1)-
section'” of K, consising of all the cells whose dimensionalities do not
exceed n—1.

Such a map will be called a characterssiic map for the cell e If
fio™—er is a characteristic map for e*, so obviously is fk:o"—é", where
h:(o", do™)—(o™, do™) is any map such that hIo"‘—ao"' is a homeo-
morphism of ¢®—3do™ onto itself. No restriction other than de* CK*»!
is placed on f I do™. Therefore &* need not coincide, as a point set, with
a subcomplex of K. Since K, and hence é#, is a Hausdorff space and
since o™ is compact it follows that & has the identification topology
determined’® by f. A complex is defined as a topological space with a
certain cell structure. Therefore we shall not need a separate letter to
denote a complex and the space on which it lies.!? Notice that, in the
absence of further restrictions, any (Hausdorff) space may be re-

# The use of these complexes was suggested in [3, p. 1235)]. They are now called
cell complexes, rather than membrane complexes, in conformity with [14].

17 K» is defined for every value of . If there are no m-cells in K for m>n then
Kr=K,

1 [ e., Y e~ is closed if, and only if, f-1Y is closed. In other words the closed sets
in &* are precisely the sets fX for every closed set, X o®, which is saturated with
respect to f, meaning that f-1fX =X (cf. [23, pp. 61, 95] and [24, p. 52]).

¥ N.B. ¢€ K will mean that ¢ is a cell of the complex K and e K, éC K, etc., will
mean that the sets of points ¢, ¢, etc., are subsets of the space K.
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garded as a complex. For example, we may take it to be the complex
K =K°, which consists entirely of 0-cells, each point in K being a
0O-cell.

A subcomplex, LCK, is the union of a subset of the cells of K,
which are the cells of L, such that, if eCCL then éCL. Clearly Lisa
subcomplex if it is the union of a subset of the cells in X, which isa
closed set of points in K. However the above example shows that a
subcomplex need not be a closed set of points. Clearly K" is a sub-
complex, for each 20, and we admit the empty set as the sub-
complex K—1. Also the union and intersection of any set of subcom-
plexes, finite or infinite, are obviously subcomplexes. If X CK is an
arbitrary set of points we shall use X(X) to stand for the intersection
of all the subcomplexes of K, which contain X. Obviously K(p)
= K{(e) =K (), where p is any point in K and eEK is the cell which
contains p. A finite subcomplex, L (i.e. one which contains but a finite
number of cells) is a closed, and indeed a compact subset of K. For
it is the union of the finite aggregate of compact sets, &, for each cell
ecL.

The topological product, K; X K, of complexes Kj, K, is a complex,
whose cells are the products, emtm=¢l1XeR2, of all pairs of cells
ehEK,, e K,. For let fitoni—éni (£=1, 2) be a characteristic map
for e, let gio™ Xom—e1t™1 be given by g(py, p2) = (fipy, fops) and let
h:gmtrr—gmXo™ be a homeomorphism (onto). Then gh:gritm
—gr1tm obviously satisfies the conditions (4.1). Therefore K; XK, is
a complex, with this cell structure. In particular K X I is a complex,
which consists of the cells X0, eX1, X (0, 1), for each cell ecK,
where (0, 1) is the open interval 0<:<1.

Let K be a locally connected complex, let K be a (locally connected)
covering space of K and let p: K—K be the covering map. That is to
say there is a basis, { U}, for the open sets in K such that, if U€ { U}
then p maps each component of p~'U homeomorphically onto U
(cf. [20, p. 40]). Let 2EK be a given point and let e*E€K be the cell
which contains x =p%. Then a characteristic map, f:o"—é", can be
“lifted” into a unique map,? f:¢»— K, such that f=pf and f(f'x) = 2.
Let &*=f(o™—0do™) and let po=p] &, Then fl o"‘—ao"‘=po(f| o™ —do")
and since f| o —do™ is a (1-1) map onto e» it follows that p, is (1-1)
and is onto e,. Since p, and hence p,, is an open mapping it follows
that po is a homeomorphism. Since

- n -1 n n,
fla'“—aa' =po(f|a—60')
® See (21, Theorem 2, p. 40] or [22]. We shall sometimes use the same symbol,

J or g, to denote two maps, f:4—B, g:4—CCB, such that fa=ga for each point
#C A, even though By C.
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it follows that f I o*—do¢™ is a homeomorphism, which, according to
the definition of &, is onto &. Also fdo»C K*—!=p~'K»"!, Therefore f
satisfies the conditions (4.1). It follows that K is a complex, each of
whose cells is mapped by p homeomorphically onto a cell of K.

Let Q be a subcomplex of K and let e be a given cell in Q. Then
Dé is closed, since & is compact, and peCpQ. Therefore pe=peCpQ.
Therefore pQ is a subcomplex of K, which consists of the cells pe for
each cell ecQ.

5. CW-complexes, We shall describe a complex, K, as closure finite
if, and only if, K(e) is a finite subcomplex, for every cell e K. Since
K(p)=K(e) if p&e this is equivalent to the condition that K(p) is
finite for each point p€ K. If LCK is a subcomplex and e L then
obviously L(e) =K (e). Therefore any subcomplex of a closure finite
complex is closure finite.

We shall say that K has the weak topology (cf. [1, pp. 316, 317]) if,
and only if, a subset XCKX is closed (open) provided XMé is closed
(relatively open) for each cell e K. If K is closure finite this is
equivalent to the condition that X is closed provided XML is closed
for every finite subcomplex LC K. For XML is the union of the finite
number of sets XMé (¢€L). Therefore XML is closed if each set
XNMé is closed. Conversely, if XML is closed for each finite subcom-
plex, L, and if K(¢) is finite, then XMé is closed, since XMé
=XNK(e)Ne.

By a CW-complex we mean one which is closure finite and has
the weak topology. Any finite complex, K, is obviously closure finite
and it has the weak topology since X CK is the union of the finite
number of sets X/Mé (¢&€K). Therefore any finite complex is a CW-
complex. Also a complex, K, is a CW-complex if it is locally finite,
meaning that each point p& K is an inner point of some finite sub-
complex of K. For let K be locally finite. Then K (p) is finite, for each
point pE K. Therefore K is closure finite. Let XCK be such that
XNL is closed for each finite subcomplex LCK. Let L be a finite
subcomplex of which a given point p&EK —X is an inner point. Since
XNL is closed, p is an inner point of L = X =L —(XML). Therefore
X is closed and K has the weak topology. It may be verified that the
number of cells, and hence the number of finite subcomplexes of a
connected, locally finite complex, K, is countable. Hence, and from
(G) below, it may be proved that K is a separable metric space.

If the cells in a CW-complex, K, have a maximum dimensionality
we call this the dimensionality, dim K, of K. If there is no such
maximum we write dim K = o,

Examples of complexes which are not CW-complexes are:
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(1)

(1) do" (n>1) regarded as a “O-dimensional” complex, K® whose
cells are the points of d¢*. This is closure finite but does not have the
weak topology.

(2) o (n>1), regarded as a complex K»=K"Je", where e*=0"
—do® and K%=d¢*, as in (1). This has the weak topology, since
é&*= K*, but is not closure finite.

(3) a simplicial complex, which has a metric topology but which
is not locally finite (e.g. a complex covering the coordinate axes in
Hilbert space). The weak topology in such a complex cannot be
metricized (cf. [1, pp. 316, 317)).

Let K be a CW-complex. We establish some properties of K.

(A) A map, f: XY, of a closed (open) subset, X CK, in any space,
Y, is continuous provided f | XME is continuous for each cell e K.

Let f.=f| XMEé be continuous, for each cell e€K. Let ¥, be any
closed (open) subset of ¥. Obviously éNf~1Ye=f,'Y, and it follows
from the continuity of f, that éNf~'Y, is a relatively closed (open)
subset of XMé& But XMé& is a closed (relatively open) subset of ¢,
whence ¢Mf-1Y, is closed (relatively open) in & Therefore f~'Y, is
closed (open) in K, and a fortiori in X. Therefore f is continuous.

(B) A4 subcomplex, LC K, is a closed subspace of K and the topology
induced by K is the weak topology in L.

Let YCL be such that YNL, is closed, and hence compact, for
each finite subcomplex LoCL. Since ¥YMNL; is compact it is a closed
subset of K. Let K, be any finite subcomplex of K. Then Ly=LMNK,
is a finite subcomplex of L and

Therefore YN K, is closed, whence ¥ is closed in K, and a fortiori in
L. Therefore L has the weak topology. Also, taking Y=L, it follows
that L is closed, which establishes (B).

(C) If K is connected so is K* for each n>0.

Let n>0 and let K* be the union of disjoint, nonvacuous closed
sets K3}, K3. Since the closure of a cell e&K is connected it follows
that éCK} if eNK} 70 (§=1, 2). Therefore K} is a subcomplex of K.
Clearly de*+! is connected (e**'& K), whence it lies either in K3 or in
K3. Therefore K*+! is the union of disjoint subcomplexes, K3*!,
K3*!, where KfCKtH and erH' €K if e+ C KT, A similar (induc-
tive) argument shows that K™ is the union of disjoint subcomplexes,
K7, K3, such that KPCKPt ' (m=n,n+1, - - - ). Let K; be the union
of the K for m=n, n+1, - - - . Then K,NK»=K7 and

KiNKy = U (KiNE)NK" =U KT N K; =0.
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(1)

Also K;#0, since K CK;, and K is a closed subset of K, according to
(B). Therefore K is not connected, which establishes (C).

(D) If XCK is compact, then K(X) ts a finite complex.

If X meets but a finite number of cells, ¢, - - -, &6 CK, it is con-
tained in the finite union of the (finite) subcomplexes K(e), « + -,
K(ex). Assume that there is an infinite set of cells, {e;}, each of which
meets X and let p,&XMe;. Then a finite subcomplex, LCK, con-
tains but a finite set of the cells in {e;} and e L=0 unless e;CL.
Therefore L contains but a finite number of points in the set P = { pil,
whence P is closed. Similarly any subset of P is closed, whence P is
discrete. But this is absurd, since P is compact, being a closed subset
of X. Therefore (D) is established.

(E) If a complex L, and also L™ for each n=0, all have the weak
topology, then L is a CW-complex.

Certainly L? is closure finite. Assume that L*! is closure finite,
and hence a CW-complex, for some #>0. Let e" be a given n-cell in
L». Since de” is compact it follows from (D) that L(de") is finite.
But obviously L(e*) =L(de*)\Je and it follows from induction on n
that L is closure finite, which establishes (E).

Let f: K—L be a map of K onto a closure finite complex L, which
has the indentification topology'® determined by f. Further let the
subcomplex L(fé) be finite for each cell e€K.

(F) Subject to these conditions L ts a CW-complex.

Let YCL be such that YL, is closed for each finite subcomplex
LoCL. Let Log=L(fé) for a given cell e€ K. Then éCf*L, and

FIYNe=fYNeNeC (Y NFLYyNeCFY NL) NG,

since fLANS1BCf~Y(ANB) for any sets A, BCL. But f~!(¥ML,)
Cf'Y. Therefore

fFYNe=fYYNL)Ne

Since YN L, is €losed it follows that f~!YMé is closed. Therefore f-' Y
is closed, since K has the weak topology. Since L has the identifica-
tion topology determined by f it follows that Y is closed. Therefore
L has the weak topology. Since L is closure finite by hypothesis thia
proves (F),

(G) K is a normal space.

Let X,, X,CK be disjoint, closed subsets and let X;=X,NKr
(¢=1, 2; r20). Clearly K9 is a discrete set, and hence normal. Let
n>0 and assume that there are disjoint, relatively open subsets,
Uy™', Uy 'CK™!, such that X77'CUP™'. Then X:N\U; '=0
(3, j=1, 2; i7#j). If K»=K"! we define Uy = Up"'. Otherwise let
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f:o"—e" be a characteristic map for a given n-cell e K and let
Vi=f U Cos", Yi=fX:Co.

Since X;NX,;=0, X;N\T; '=0we have YiNY;=0, V.N\V;=0. Let po
be the centroid of ¢ and let r, p be polar coordinates for o* (rE1,
pEdom) such that (r, p) is the point which divides the rectilinear
segment pop in the ratio r:1—r. Let V! Co" be the (open) subset,
which consists of all points (r, p) with p& V; and 1 —e <r =<1, where
0<e<1.Since YiNV;=0it follows that, if ¢ is sufficiently small, then
YNV =0, which we assume to be the case. Since f¥.CX;, fdo"
CK™' and X;NK'CU;™! it follows that Y;Nde*C V,. Let V!’
be an %-neighborhood of Y, defined in terms of a metric for o=,
where 7 is so small that V{’NVy =0, V!’ N\V!=0 and V{’
MN(@o»— V;)=0. Then V!’ Maoc"C V;. Let

W=V JV{.
Then Y, CW; and WiNW,=0. Obviously V! MNdo™=V;, whence

~1_ n-1

(5.1) W.Nde =Vi=f U;

Since f:o™"—0dg™ is a (1-1) map onto e” and fdo"Me” =0 it follows that
W, is saturated'® with respect to f. Therefore fW; is a relatively open
subset of &*. From (5.1) we have

(5.2) W.NK" =vur " Noe

and it follows that fWiM\fW.=0.
Let us write W;=W,(e™) and let

Ur=UT U U fweh.
~EK

Then it follows from (5.2) that UfNK*'= U}~ ! and that
Uinoe = U Nae" = fWi(e)NK.
Also fW,(e”) CK™'Ue™ and U;Me™=fW,(e®)Me~. Therefore
UiNg =(U:Nae)U UiN e
= WLHNE U
= fWie).

Therefore U; is a relatively open subset of K*. Obviously XTCU;
and UM U =0. Therefore such sets, Uy, may be defined inductively
for every value of n. Let them be so defined and let
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U{ = UU:‘.

Since Uy*'MK»= Uy} it follows by induction on m>n that
UrNK =UiNnkK'NnK =vr'nK* =u}

and hence that U;N\Kr= U;. Therefore it follows, first that U; is
an open subset of K and second that UyN\U;=0. Obviously X;CU;,
which completes the proof of (G).

(H) If L ss a locally finite** complex then K XL is a CW-complex.

If e€K, ¢’CL are cells in K and L respectively, then the cell
eXe'SK XL is contained in the finite subcomplex K(e) XL(e’)
CK XL. Therefore K XL is closure finite.

Let the cells in K be indexed and with each m-cell, &K,
(m=0, 1, - - -) let us associate an m-element, E;, as follows. The
points in E shall be the pairs (x, ef), for every point xEo™, and E7
shall have the topology which makes the map x—(x, €’) a homeo-
morphism. No two of these elements have a point in common and
we unite them into a topological space,

P=UE,
=, §
in which each E{', with its own topology, is both open and closed.
Let ft*:0™—¢ be a characteristic map for ef* and let ¢: P—K be the
map which is given by ¢(x, €f') =fi"x, for each point (x, ef') €P. Since
& has the identification topology determined by f* it follows that
the weak topology in X is the identification topology determined by ¢.
Let a space,
Q = U E,
"2
and a map, ¥:Q—L, be similarly associated with L. Then K XL
=0(PXQ), where 8:PXQ—K XL is given by 8(p, q) =(¢p, ¥q)
(pEP,qecQ). Also PXQ is the union of the (m+n)-elements Ef* X Ej,
and 0(ETXET) =¢&3*", where egt" =€ Xe}". Therefore the weak topol-
ogy in K XL is obviously the same as the identification topology
determined by #.

Let VCL be an open subset and y& V an arbitrary point in V.
Since y is an inner point of a finite subcomplex, LsCL, it is contained
in a subset, VoC VNL,, which is open in L. Since L is normal there is
a neighborhood, W, of y such that WC V,. Since WCVyCL, and

1 [ do not know if this restriction on L is necessary.
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(1)

since V), is open in L, it follows that WNé=0 for any cell €L — Lo,.
Therefore there are only a finite number of cells in L, whose closures
meet W. Therefore y—'W is contained in the union of a finite subset of
the components E{CQ. Therefore y~'W is compact and (H) fol-
lows from Lemma 4 in [7].

(I) A homotopy, fi: X—Y, of a closed (open) subset, XCK, in an
arbitrary space, Y, ss conlinuous provided f.IXf\é is continuous for
each cell e€K.

This follows from (H), with L=1, and (A), applied to the subset
X XICKXI and the map f: X XI—Y, which is given by f(x, t) =fux.

(1) (Homotopy extension.) Let fo: K—X be a given map of K in an
arbitrary space X. Let g.: L-——X be a homotopy of go= fol L, where L is
alsubcomplex of K. Then there is a homotopy, f.: K—X, such that
fg L=g¢

Let K,=L\UKr* (r=—1; K_,=L) and assume that g, has been
extended to a homotopy, f7™': K. 1—X, such that f5~'=fs| K-y,
Y L=g; (n=0). The homotopy f7~! can be extended throughout
K. \\Jem, for each n-cell** ercK,—L, and hence, by (I), to a (con-
tinuous) homotopy f7:K,—X. Starting with f;'=g, it follows by
induction on n that there is a sequence of homotopies, ff:K,—X
(n=0, 1, -+ +), such that f(','=fo|K,., f}'lK,._, =71, It follows from
(I) that a homotopy, f:: K—X, which satisfies the requirements of
(1), is given by f:| K.=f7.

Let X,CX,C - - - be a sequence of subspaces of a given space, X,
such that any map, (o*, do*)—(X, X,_,), is homotopic, rel. do», to
amap® ¢*—>X, (n=0,1, - - -). Let LCK be a given subcomplex,
which may be empty, and let fo: K—X be a map such that foL"CX,,
foreachn=0,1, - - -.

(K) There is a homotopy, fe: K—X, rel. L, such that LK"C X, for
each n=0,1, .- ..

Since each point in X is joined by an arc to some point in X, there
is a homotopy, f§: K*—X, rel. L%, such that f3=7£,| K® and f3K°CX,.
Let n>0 and assume that there is a homotopy fi~!: K*1—X, rel.
L1, such that f}'=fo| K*, fi'K*'CX,_,. It follows from (J)
that ff~' can be extended, first throughout L* by writing ﬂ"'IL"
=fo|L", and then to a homotopy, £:K"—X, rel. L» (£o=fo|K").
Since £,K*!'C X,-1 it follows from a standard argument (see [6, §8]),
and the condition on X,, X, - - -, that there is a homotopy, 7.:K»
—X, rel. (K»~1\UL»), such that ne=§, mK*CX,. If dim K < = we

® See [$, Lemma 10 in §16].

® If m =0 this simply means that each point in X is joined by an arc to some point
11l x.
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(1)

define f7: K»—X as the resultant of & followed by 7. Then f may be
defined inductively for every #n =0 and we take f.=f", where m =dim
K. But if dim K= = this method fails and we shall define f7 as an
extension of ff~!, not as the resultant of & followed by 7.

If K»=K™! we define f; =f;~'. Otherwise let g:g"—2&" be a char-
acteristic map for a given n-cell e K. Let r, p be polar coordinates
for o™, defined as in (G), and let p;:é*—X be defined by

peg(r, p) = E2ey1ang(r, P) (if0S2t<1+7)

(5.3) .
= nee1-n/a-ng(r, p) (if14+r<2ts2).

Since 7o=4& and g"‘] e” is a homeomorphism onto ¢"—3d0" it follows
that p.] e is single-valued and continuous. Since px =£.x for any point
x=g(1, p)Sae it follows that p, is single-valued. Also p; is continu-
ous at {g(r, ), t} if r<1 and, obviously, if ¢<1. I say that it is con-
tinuous at {g(1, p), 1} = (gp, 1). For gp€ K1 and n.| K*1=1n,| K1
=£,,| K1, Therefore, given a neighborhood, UCX, of &igp =n.gp, it
follows from the compactness of I that there is a neighborhood,
VCeé», of gp such that nxE U for every tE1, provided x& V. There is
also a neighborhood, V'Ceé", of gp, and a 8>0 such that (ExE U if
xEV!, 1-25<t=s1. Since (2-28)/(14r)>1-28 it follows that
px U if xEVNV’, 1-06<t=S1. Therefore p, is continuous. Also

o1, ) = ka1, ) = fi g1, p),

pog(r, p) = kog(r, p) = fog(r, 9),

pig(r, p) = mg(r, p) € X
Therefore a homotopy, fi:K"—X, rel. L», such that

f:IK”_l= f:.-l’ f:=f0IKnr le”CXm

is defined by ff| K»t=£"1, f*| & =p,, for each n-cell e»cK™. It fol-
lows from induction on # that such a homotopy is defined for each
n=0 and a homotopy, f.: K—X, which satisfies the requirements of
(K), is defined by f| K»=f.

Let fo:K—P be a map of K into a CW-complex, P, such that
fo| L is cellular, where LCK is a subcomplex. Also let g;: K—P be a
homotopy such that the maps go, g1 and the homotopy g:| L are cellu-
lar.

(L) There ¢s a homotopy, f.lK——)P, rel. L, of fo tnto a cellular map
fi. There is a cellular homotopy, g{ : K—P, such that gi =g., gi =g,
gl|L=glL.

Since any continuous image of ¢™ in P is compact it is contained in
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(1)

a finite subcomplex QCP, according to (D). Any map (¢", do")
—(Q, Q*1) is homotopic,* rel. d¢*, in Q to a map ¢*—Q*. Therefore
the first part follows from (K). The second part follows from the first
part with K, L, f, replaced by KXI, (KX0)\J(LXI)\J(KX1),
g: KX I—-P, where g(p, t) =g:p.

(M) K ¢s locally contractible.

Let ao& K be a given point, let UCK be a given neighborhood of
a9 and let e'& K be the cell which contains a¢. Let E"C UNer be an
r-element, which contains @, in its interior, V'=Er—0dE", and let
fi: V*— V7 be a homotopy such that fg=1, f{Vr=a,. Using induction
on n we shall define sequences of relatively open subsets, V*CK*
(n=r, r+1, - - - ), such that V"N K*= V= V*CU, and of homot-
opies f7: V*— V", such that f7+| V=77, fi=1, fiV*=a,. Assuming
that this has been done, let

V= L“J | 4
and let f;: V—V be defined by f:| V*=f7. Then it follows from the
definition of the weak topology and from (I) that V is open in K
and f, continuous. Obviously VC U, fe=1, fiV=a, and (M) follows.

Assume that V! and 7! satisfy the above conditions for some
n>r. Let g:o*—2&" be a characteristic map for a given n-cell, e K,
and let polar coordinates, r, p, for o™ be defined as in (G). If gdo*
NV»*1=0, let WCo™ be the empty set. Otherwise let WCo™ be the
(open) subset, which consists of all points, (r, p), such that

l—e<rs1, P E gV,

where 0<e<1. Since V*'CU, whence g 'V 1Cg1U, it follows
that WCgU if e is sufficiently small, which we assume to be the
case. Let £:: W—W be the “radial projection,” which is defined by

E‘(" p) = (f + $—rit, P)t
and let 8,gW—V*"UgW be given by

0:g(r, p) = gk2esra-n(r, p) (f0=2<1—17)
= f‘('z_:-w)/umg(l. ?) (ifl1l—r=2252).

Since £(1, p) = (1, p) and gh(r, p) =£(1, p) =f3"'2(1, p) it follows from
an argument similar to the one which comes after (5.3) that 8, is
single-valued and continuous. Alsc

% [8, §16, Theorem 6). It follows from Theorem 6 in [S] that the condition
(€ P(fox) (*CK) may be imposed on the homotopy f: in (L).

a2



(1)

8ig(1, p) = £ g(L, p),
(5'4) oog(f, P) = gfo(', P) = g(r, P)'
0.8(r, 9) = f1 (1, 9) = 0.

Let V™ be the union of V*! and the sets gW, which are thus de-
fined for all the n-cells in K. Arguments used in (G) show that V»
is a relatively open subset of K* and that V*NMK»1= V"1 Also it
follows from the definition of W that de*"N\W Cg~1V-1, whence

K—'NgW C V™~

Hence it follows from the definition of the weak topology that V*
is the union of V! and the sets gW, which are closed since W is
compact. Since V*1CU, WCg U it follows that V*CU. Finally
define fF: Vr—Vn by f7| Vr-1=£7"1, ﬂ'IgW=0.. It follows from (5.4)
and from (I) that f7 is single-valued and continuous and that fg=1,
ftV»=a,. Therefore (M) follows by induction on .

(N) Any covering complex, K, of K is a CW-complex.

Since K is locally connected, by the definition of a covering space,
each of its components is both open and closed and is a covering com-
plex of a component of K, A locally connected complex is obviously a
CW-complex if, and only if, each of its components is a CW-complex.
Therefore (N) will follow when we have proved it in case K and K are
connected. We assume that this is so and also, to begin with, that K
is a regular covering complex of K. That is to say the group, G, of
covering transformations® in K operates transitively on the set p~g,
for any point ¢&K, where p: K—K is the covering map. We shall
describe an open set, UCK, as an elementary neighborhood if, and
only if, each component of p~1U is mapped by p topologically onto
U. We shall describe an elementary neighborhood in K as a bastc
neighborhood if, and only if, its closure is contained in an elementary
neighborhood. We shall describe a subset of K as a baséc neighbor-
hood if and only if it is a component of p~!'U, where U is a basic
neighborhood in K. If CK is a basic neighborhood the com-
ponent of p~!(pU) are the sets TU for every TEG. It follows from
the definition of K and the normality of K that the basic neigh-
borhoods constitute a basis for the open sets, both in K and in K.

Let UCK be a basic neighborhood and let V be an elementary
neighborhood such that TC V. Then the components of p~'V are
disjoint open sets in K, each of which contains exactly one com-
ponent of p~1T. Let QCp~'T be a set of points, of which at most

% | e., the group of homeomorphisms, T:X—EK, such that pT=p.
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one lies in each component of p~'T. Then Q is a closed discrete set.
For if Q has a limit point, §, then pg& U C V, whence { lies in one of
the components, ¥, of p~1V. But this is absurd, since V contains at
most one point of Q. Therefore Q is closed and discrete.

Let UCK be a basic neighborhood, let U* be its closure® and let
CC K be compact. I say that only a finite number of the sets TC meet
U*, where TEG. For if TC meets U* then C meets T-1U*. Let
grECNTIU*. Since T'U*NT"U*=0 if T'»#T" it follows from
the preceding paragraph that the aggregate of points ¢r, for every T
such that U*MTC#=0, is a discrete, closed subset of C. Since C is
compact the set {gr} is finite, which proves our assertion.

We now prove that K has the weak topology. Let X C K be a sub-
set such that XMe* is closed, for every cell ZE K. In order to prove
that X is closed it is enough to prove that XN\ U* is closed, where U*
is the closure of an arbitrary basic neighborhood UCK. For this
implies that U —X=U—(XNU* is open, whence it follows that
K — X is open. Therefore, to simplify the notation, we assume that
X CU*, where U is a basic neighborhood in K. Let X=pX and let
e be a given cell in K. Then®

XNeé=p(XN pe).

Let #€ K be a cell which covers e. Then p—'z consists of the sets Te*
for every TEG, and Te* is the closure of the cell TéC K. Since e* is
compact it follows from the preceding paragraph that only a finite
number of the sets Te*, say Tie*, - - -, Tie*, meet U*. Let P;=X
NTie* (s=1, - - -, k). Then

XNeé=p(XNp1e) =pP,\J---UP).

But P; is closed, by the hypothesis concerning X, and hence compact,
since T;e* is compact. Therefore, P,\J - - - \UP; and hence XM\é are
compact. Since the cell e X is arbitrary it follows that X is closed.
Therefore p—1X is closed. Since U*MT U*=0if T>#1 it follows that

X=U0*NUTX =U*NpX.
T

Therefore X is closed and it follows that K has the weak topology.

Since K is discrete it follows that K°=p~1K?® is a discrete set of
points. That is to say, K° has the weak topology. If #>0 then K* is
connected, according to (C), and K* is obviously a covering complex
of K. It follows from (L) that the injection homomorphism, m (K*)

® We shall denote the closure of a set BC X by P*.
o If f: P—~Q is any map and AC P, BCQ, then f(AN\f1B) = (fA)\B.
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—m(K), is onto, whence K* is connected. Obviously TR*= K» for
any TEG and it follows that K= is a regular covering complex of
K». Therefore K* has the weak topology, according to what we have
just proved. It follows from (E) that K is a CW-complex.

Now let K be a (connected) covering complex of K, which is not
regular. Then a universal covering complex, X of K is a universal
covering complex of K. Therefore K is a CW-complex. Let p: K—K
be the covering map. Since p is an open map it follows that K has
the identification topology determined by p. It follows from the final
paragraph in §4 that K is closure finite and that the remaining condi-
tion of (F) is satisfied. Therefore it follows from (F) that K is a
CW-complex, which completes the proof of (N).
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The following note by Eilenberg and Steenrod is the first
announcement of their axiomatic approach to homology theory. Of
course, this work has influenced later developments very strongly.

It should perhaps be pointed out that in 1945, when this note appeared,
we had essentially no examples of what are now called 'generalised
homology theories'; nor did we have the techniques, such as

spectral sequences, which are now used for dealing with them. The
only prerequisite is a minimal acquaintance with homology groups
(see $1 of the introduction).
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2 AXIOMATIC APPROACH TO HOMOLOGY THEORY
By SAMUEL EILENBERG AND NORMAN E. STEENROD
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MICHIGAN

Communicated February 21, 1945

1. Introduction—The present paper provides a brief outline of an
axiomatic approach to the concept. homology group. It is intended that
a full development should appear in book form.

The usual approach to homology theory is by way of the somewhat
complicated idea of a comnplex. In order to arrive at a purely topological
concept, the student of the subject is required to wade patiently through a
large amount of analytic geometry. Many of the ideas used in the con-
structions, such as orientation, chain and algebraic boundary, seem arti-
ficial. The motivation for their use appears only in retrospect.

Since, in the case of homology groups, the definition by construction is
so unwieldy, it is to be expected that an axiomatic approach or definition
by properties should result in greater logical simplicity and in a broadened
point of view. Naturally enough, the definition by construction is not
eliminated by the axiomatic approach. It constitutes an existence proof
or proof of consistency.

2. Preliminaries—The concepts of a topological space and of a group
are assumed to be known. The symbol (X, 4) stands for a pair consisting
of a topological space X and a closed subset 4. A map f:(X, A) — (¥, B)
of one such pair into another is a continuous map of X into ¥ which maps
A into B. In case 4 is the vacuous set (X, 4) is written as (X). If fo, fi
are two maps of (X, 4) into (¥, B), they are homotopic if there exists a
homotopy f(x, £) connecting the two maps of X into ¥ such that f(x, {) ¢ B
for any x ¢ A and all £.

3. Basic Concepts—The fundamental concept to be axiomatized is a
function H,(X, A) (called the g-dimensional, relative homology group of
X mod A) defined for all triples consisting of an integer ¢ 2 0 and a pair
(X, 4). The value of the function is an abelian group.

The first subsidiary concept is that of boundary. For each ¢ = 1 and
each (X, 4), there is a homomorphism

d:H(X, A) — H,_, (4)

called the boundary operator.

The second subsidiary concept is that of the induced homomorphism.
If f is a map of (X; 4) into (¥, B) and ¢ 2 0, there is an attached homo-
morphism
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f*:Hq(Xs A) - Hq(Y! B)

called the homomorphism induced by f.

4. Axtoms.—These three concepts have the following properties.

Axiom 1. If f = identity, then fy = identity.

That is to say, if f is the identity map of (X, 4) on itself, then f, is the
identity map of H,(X, A) on itself.

AxIoM 2. (gf)* = g*f*.

Explicitly, if f:(X, 4) — (Y, B) and g: (Y, B) — (Z, C), then the combi-
nation of the induced homomorphisms fy:H,(X, A) — H,(Y, B) and
gxH,(Y, B) —» H,(Z, C) is the induced homomorphism (gf):H(X, 4) —
H,(Z, C).

An immediate consequence of Axioms 1 and 2 is that homeomorphic
pairs (X, A4) and (Y, B) have isomorphic homology groups.

AxioMm 3. Ofyx = fsO.

Explicitly, if f:(X, A) — (Y, B) and ¢ 2 1, the axiom demands that
two homomorphisms of H,(X, A) into H,_, (B) shall coincide. The first
is the combination of J:H,(X, A) — H,,(A) followed by (f|4)s:
H, ,(4) — H, ,(B). The second is the combination of f,:H (X, 4) —
I1(Y, B) followed by 0:H/(Y, B) - H, , (B).

AxioMm 4. If f is homotopic to g, then fy = gy.

Definition: The natural system of the pair (X, A) is the sequence of
groups and homomorphisms

. > H(X) — Hy(X, A) = H,_y (4) > Hey (X) > ... > Hy(X, 4)

where H,(X) — H/(X, A) is induced by the identity map (X) — (X, 4).
II(X, A) — H,_,(A) is the boundary operation, and H, , (4) = H,_, (X)
is induced by the identity map (4) — (X).

AxI0M 5. In the natural system of (X, A) the last group, Hy(X, A), 1s
the image of Hy(X). In any other group of the sequence, the image of the
preceding group coincides with the kernel of the succeeding homomorphism.

At first glance, this axiom may seem strange even to one familiar with
homology theory. It is equivalent to three propositions usually stated as
follows: (1) the boundary of a cycle of X mod A bounds in A4 if and only
if the cycle is homologous mod A4 to a eycle of X; (2) a cycle of A4 is homol-
ogous to zero in X if and only if it is the boundary of a cycle of X mod 4;
(3) a cycle of X is homologous to a cycle of A4 if and only if it is homologous
to zéro mod A.

Definstion: An open set U of X is strongly contained in 4, written
l7 € A, if the closure U is contained in an openset V € 4.

Axiom 6. If U C A, then the identity map: (X — U, A — U)— (X, 4)
induces isomorphisms (X — U, A — U) = H(X, A) for each g= 0.
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This axiom expresses the intuitive idea that H,(X, A4) is pretty much
independent of the internal structure of 4.

Axiom 7. If Pisa point, then H(P) = O jor q 2 1.

A particular reference point P is selected, and Hy(Py) is called the
coefficient group of the homology theory.

5. Uniqueness—On the basis of these seven axioms, one can deduce
the entire homology theory of a complex in the usual sense. Some high-
lights of the procedure are the following.

If ¢ is an n-simplex, and ¢ its point-set boundary, then Hy(o, ¢) is iso-
morphic to the coefficient group. Further, H (e, ¢) = 0 for ¢ # n, and the
boundary operator 0:H,(s, 6) — H,_, (¢) is an isomorphism onto for
7 > 1, and into for n = 1.

Let f be the simplicial map of o on itself which interchanges two vertices
and leaves all others fixed. Then, for any g ¢ H,(s, ¢), we have fi(g) =
—g. This permits the usual division of permutations into the classes of
even and odd, and leads naturally to a definition of orientation—a concept
‘which is quite troublesome in the usual approach.

Definition: Let H, H' be two homology theories satisfying Axioms 1
through 7. A homomorphism

h.H— H'
is defined to be a system of homomorphisms
h(g, X, A):H(X, A) > H/(X, 4)

defined for all ¢, (X, A), which commute properly with the boundary
operator and induced homomorphisms:

h(q —1,4)0= b,h(q’ X, 4), h(g, Y, B)f* =f#’h(qv X, 4). (I)

If h gives an isomorphism of the coefficient groups k(0, Po):Hy(P,) =
Hy'(Pg), then k is called a strong homomorphism. If each h(g, X, A) is an
isomorphism, then k is called an eguivalence and H and H’ are called
equivalent.

Since the usual homology theory of complexes is deducible from the
axioms, there follows the

UNIQUENESS THEOREM: Amny two homology theories having the same
coefficient group coincide on complexes.

Explicitly, if ¢:Hy(Ps) = Hy'(Po) is an isomorphism between the
coefficient groups of H and H’, then isomorphisms

h(g, X, A):H (X, A) = H/(X, A)

can be defined for X a complex, 4 a subcomplex such that 2(0, P,) coincides
with ¢, and the relations (I) hold in so far as they are defined (f need not be
simplicial). Indeed, there is just one way of constructing h(g, X, A4).
The uniqueness theorem implies that any strong homomorphism k:H —
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H' is an equivalence as far as complexes are concerned. In view of Axiom
4, the uniqueness theorem holds for spaces having the same homotopy type
as complexes. These include the absolute neighborhood retracts.

6. Existence.—As is to be expected, homology theories exist which
satisfy the axioms. Both the Cech homology theory H! and the singular
homology theory H° satisfy the axioms. This is fairly well known,
although the proofs of some of the axioms are only implicitly contained in
the literature. It is well known that the two homology theories differ
for some pairs (X, A). Thus, the axioms do not provide uniqueness for all
spaces.

The surprising feature-of H® and H* that appears in this development is
that they play extreme roles in the family of all homology theories, and
have parallel definitions. They can be defined as follows: The homology
groups of the simplicial structure of a complex (using chains, etc.) are
defined as usual. (As a first step of an existence proof, this is quite natural
since the definition has been deduced from the axioms.) Using maps
K — X of complexes into the space X, the singular homology groups
H%(X, A) can be defined using a suitable limiting process. Similarly using
maps X — K of the space into complexes, the Cech homology groups
(X, A) are obtained. It is then established that H® and H* are minimal
and maximal in the family of all homology theories with a prescribed coef-
ficient group in the sense that, if H is any homology theory, there exist strong
homomorphisms H° — H — H'. This is an indication of how it is possible
to characterize H® or H! by the addition of a suitable Axiom 8.

7. Generalizations—A suitable refinement of the axioms will permit
the introduction of topologized homology groups.

Cohomology can be axiomatized in the same way as homology. It is
only necessary to reverse the directions of the operators 0 and fi in the
above axioms and make such modifications in the statements as these
reversals entail. The analogous uniqueness theorems can be proved.

The products of elements of two cohomology groups with values in a
third (in the usual sense) may also be axiomatized and characterized
uniquely.
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3&4

The next two pieces constitute an introduction to spectral
sequences, which today form an almost indispensable part of the
topologist's tool kit. For applications of spectral sequences, see
§§5-8, 10, 12 of the introduction. The only prerequisite for
reading the exposé by Eilenberg is a familiarity with the axiomatic
approach to homology theory (see §1 of the introduction). In the
extract by Massey the possible applications are more varied; some
familiarity with elementary homotopy theory would be useful.
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Séminaire H. Cartan, E.N. S., 1950/51. Topologie algébrique
LA SUITE SPECTRALE. I: CONSTRUCTION GENERALE

Exposé de Samuel Eilenberg, le 22.1.1951

1. Fondations

Nous considérerons un ensemble muni d'une relation d'ordre
(partielle), notée A < B, qui est réflexive (A < A) et transitive
(A<B et B C entrament A < C). On supposera que 1'ensemble
contient un plus petit é1ément, noté 0, et un plus grand élément,
noté 1; onadonc 0< A< 1 pour tout A, Nous considérerons
des paires (A, B) ol B < A, et nous écrirons (A, B) < (A', B')
lorsque A< A' et B< B'. De méme, nous considérerons des
triples (A, B, C) oi C< B< A, et nous écrirons (A, B, C) <
(A", B', C') lorsque A< A", B< B', et C< C'. Le triple
(A, B, 0) sera identifié i la paire (A, B), et la paire (A, 0) sera
identifiée i 1'élément A.

Nous supposerons qu'd toute paire (A, B) l'on ait associé
un groupe abélien (ou un module sur un anneau), noté H(A, B), qu'd
toute inégalité (A, B) < (A', B') 1l'on ait associé un homomorphisme
H(A, B) -~ H(A', B'), et qu'a tout triple (A, B, C) 1'on ait associé
un homomorphisme d: H(A, B) — H(B, C).

Ces trois termes primitifs seront assujettis aux axiomes

sujvants:

(H.1) H(A, B) — H(A, B) est l'identité.
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(H.2) 8i (A, B)< (A", B')< (A", B"), le diagramme suivant

est commutatif:

H(A, B) = H(A", B")

N\

H(A', B")

(H.3) Si (A, B, C)< (A', B', C"), le diagramme suivant est

commutatif:

d
H(A, B) = H(B, C)

.

H(A', B') = H(B', C")

(H.4) Pour tout triple (A, B, C), les inégalités (B, C) < (A,
(A, B) donnent lieu i la suite exacte:

d
. = H(A,B) ~ H(B,C) =~ H(A,C) - H(A, B) d H(B,C) ~ .

Le fait que H(A) = H(A) est un isomorphisme, joint 3
1'exactitude de la suite:

H(A) = H(A) - H(A, A) ~ H(A) ~ H(A)

entraine:

H@A, A)=0 (L

Remarque: Il suffit de supposer que 1'homomorphisme
H(A, B) - H(B, C) est défini seulement pour les paires, c'est-
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dire quand C = 0. Les axiomes (H.3) et (H.4) devront étre
énoncés avec C (et C') égala 0. On pourra alors définir
d: H(A, B) =~ H(B, C) pour un triple (A, B, C) par la composition

des homomorphismes:
d
H(A, B) = H(B) ~ H(B, C),

et 1'on pourra démontrer les axiomes (H. 3) et (H. 4) sous la forme

énoncée plus haut.

2. Les suite fondamentales

Supposons maintenant que, dans notre ensemble partielle-
ment ordonné, nous nous soyons donné un élément A, et une suite
Ap(-°° < p< +=) telle que:

...<Ap<A <A,

p+1<

Les groupes ci-dessous sont définis comme noyau-image du groupe

du millieu de la suite exacte a trois termes écrite a droite:

B H(A)~H(A) ~HA, A)

p
C: HA)- -
p ( p) H(Ap, Ap_l) H(Ap_l)
d
D: H(A, A)~-HA_, A -
b (A, p) H( o p_1) H(A, Ap_l)
ck. HA,A )-HA, A )d HA_ ., A
p’ p’ “p-k p’ “p-1 (p-l’ p—k)
k, d -
Dp. H(Ap el Ap) H(Ap, Ap_l) H(A k17 Ap_l)
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(avec k=1, 2, ...). Sinous convenons de poser A =0 et
A+°°:A, alors Cp:C;o et Dp:D:. Nous avons les relations
suivantes:
C B CB C...CHA 2.1
1€ By (A) (2.1)
1 k k+1
0=D C...CD CD c...¢cp cC c ., . c
p p p p p
k+1 k 1
C."cC.C...CC_=HA,A 2.2
p p p (p p-l) (2.2

Ces inclusions proviennent des relations de commutation dans les

diagrammes suivants:

H(A,_ ;(A) HA,, Ap\_l) = HA AL
H(A) HAY 104, )

H(A ,A ) - H(A,A

pl) H(AA)-’H(AA

P’ p-1 -1
N4 \ /
H(A, 1o A HA)
HA) = HA A ) HA LA ) = HALA )
\ \
HA, A HA A )
Posons
E,=C,/D, et El; - cgm‘; . 2.3)
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En particulier, on a:

1
= A ).
Ep = By Ap0)

Demontrons maintenant:

(2. 4)

(2.5)

Cet isomorphisme résulte directement du diagramme ci-dessous,

dont toutes les lignes et toutes colonnes sont exactes:

H(A_,A _1)—> H(A,A ) —D 0
| 7 joF oo
i{(Ap_l) ﬁrfmp) —C,——0
B ————=B

Nous considérerons maintenant le diagramme suivant:

H(AL, A )

Y 6

H(A, A, )

B
B, 0 Apk-1) = B, 1Ay )

Nous avons:

<+1
p

k+1 k
o) =
b-k Dp-k Noyau de §

Image de o = Cl; > C = Noyau de §
Imagede y =D
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Pour tout x € Cl;, choisissons un y € H(Ap, Ap-k) tel que

ay = x. Alors yy € HA ci définit un homomor-

-k’ Ap_k_l); ce

phisme:
A Ck - H(A ), avec
“p -k’ p k-1"
Noyaude A = Cl;+1
Image de A = Dk+1:/D
Puisque DII; C Cl;+1 et Dl;j-l: - Cl;_k, il s'enseuit que Dl; est

k
p-k
de A. Ainsi, A définit un homomorphisme:

contenu dans le noyau de A, et que Cl;_k/D contient 1'image

k .k k .
Cp/Dp Cp-k/Dp K oW
dk : Ek - Ek ,
P P p-k
avec:
Noyau de dp— Cp /D et Image de d::: k+l:/D
Si nous considérons la suite:
k k
d d
K ptk k p _k
Pk E,—=E, = (2.7
alors:
Noyau de dl; = Cl;+1 /Dl; et Image de dl;+k = Dl;+1 /Dl; .
(2. 8)
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Ainsi dl; d]; k= O et (2. 7) est un complexe de chaines, dont le

groupe d'homologie, calculé en El; n'est autre que:

k+1
C D =E

p / p p
Exemple: k=1,
Si k=1 les homomorphismes @ et B dudiagramme

(2. 6) sont les applications identiques, et ¥ = 6 = A est 'opérateur

dHA, A )=BA ), A )

du triple (Ap, Ap—l’ Ap-z)'

que l'opérateur

- 1 1
Puisque D_ =D = 0, il s’ensuit
a4 p  p-1

al: g! - g!
PDp p-1

coincide avec 1'opérateur d:

- H(A A

d: HA , A , .
(Apr Ap.) p-10 Ap-2)

Résumé: Les résultats précédents peuvent étre résumés

comme suit. Posons:
ES- T EX k=1
P p

Les opérateurs dl; définissent alors une dérivation dk:Ek i Ek, de

degré -k; et par rapport i cette dérivation, on a:
<" - HEY) |
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3. Le cas gradué

Dans les applications, le groupe H(A, B) sera fréquemment

donné comme un groupe gradué Y Hn (A, B), n entier; 1'homo-
n
morphisme de H(A, B) dans H(A', B') préservera le degré,

tandis que 1'opérateur d augmentera le degré de (les cas les
plus fréquents sont = +1). La suite exacte de 1'axiome (H. 4)

prend alors la forme:
.- Hn— (A,B) - Hn(B, C) - Hn(A, C)~ Hn(A, B) ~
HnJr (B,C) ~ ...

Tous les groupes qui ont été définis ci-dessus se décom-
posent en sommes directes:
B =2 B
P n n

LES=3 EX .
R

P
L'isomorphisme (2. 5) préserve les degrés, et prend la forme:

=B /B

En:p np n, p'l (3. 1)

Le diagramme (2. 6) devient:

o
A, A Hy(A, A )
v 0
B
Hoo A o A k1) Hyp Ay o Ap g1
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avec:

k k+1
C =
n,p Cn, p Noyau de 6

Imagede a=2C
Dk+1 k

Image de vy = n+ ,p—kC l)n+ ,p-k

= Noyau de 8.

11 s'ensuit que 1'homomorphisme dl; donne:

kK ..k _ .k
di L iEn Ly T En oo

k+1 .k
avec Cn,p/Dn,p pour noyau, et D

image. La suite (2. 7) devient:

k+1 k

nt ,p-k/Ont pok PO

k Ek *Ek - ... (3.2)

) -.En' ’p+k-’ n,p n+ 7p_k

et son groupe d'homologie, calculé en Ek est Ek+1.
n,p n,p

Nous supposerons maintenant que, pour tout n fixé, l'on a

Hn(Ap) =0 pour p assez petit (3. 3)

Hn(A, Ap) = 0 pour p assez grand. (3. 9)
11 suit de (3. 3) que:

B = 0 pour p assez petit, (3.5)
n,p

tandis que (3. 4) entraine que Hn(A p) - Hn(A) est sur. On a donc

Bn,p - Hn(A) pour p assez grand . (3. 6)
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Fixons maintenant les indices n et p. Puisque
Hn + (Ap_k) = 0 pour k assez grand, il en résulte que
Hn(Ap) - Hn(Ap, Ap-k) est sur, ce qui donne:

k
Cn,p = Cn,p pour k assez grand. 3.7

Puisque H ., (A, A 1) = 0 pour k assez grand, il

ptk-
en résulte que Hn_ (Ap k17 Ap) - Hn— (A, Ap) est sur. Ceci
donne:
k
D =D pour k assez grand . (2. 8)

n,p n,p

En combinant (3. 7) et (3. 8), on obtient:

k
En,p = En,p pour k assez grand . (3.9)
. k _k __ k
Puisque le noyau de dn,p'En,p En+ p-k est
k+1 , k _
Cn,p/Dn, P’ on a:
k
dn p= 0 pour k assez grand . (3.10)

Dans tout ce qui procéde, nous avons supposé que la suite

{Ap } était croissante, c'est-a-dire que A_< A On aurait

pu aussi bien considérer des suites descendgntes ggx}ifiant

Ap +1 < Ap. Le passage des suites ascendantes aux suites
descendantes peut se faire par changement du signe des indices.
Dans (2.1) et (2. 3), p- 1 devra étre remplacé par p + 1. Dans
le diagramme due paragraphe 2, p-1, p-k, p- k-1 devront

étre remplacés par p+ 1, p+k, p+ k+ 1. Ainsi:
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Dans les formules (3. 3) a (3. 6), les mots 'grand' et 'petit' devront

étre &changés.

4, Le cas contravariant

Le foncteur H considéré dans ce qui préceéde se comporte
comme une théorie de 1'homologie, et, en particulier, est covariant.
En théorie de la cohomologie, on a & considérer des foncteurs
H(A, B) pour lesquels une inégalité (A, B) < (A', B') donne
naissance & un homomorphisme H(A', B') = H(A, B), et un triple
(A, B, C) donne naissance 4 un homomorphisme d: H(B, C) ~
H(A, B). On énonce les axiomes (H.1), ..., (H.4) en renversant
le sens des fléches. Dans les définitions du début du paragraphe 2,
les fléches sont renversées, et les relations (2.1) et (2. 2)

deviennent:

.CBpCBp+1C...CH(A) (4.1)

1 k k+1
0=C_C...CccCc.CCcC c...ccCc cp Cc...cC
p p p p p

1
CD C...C D =HA, . 4,2
Dp p P ( p P"l) (4.2)
Les définitions (2. 3) deviennent:
k k k
E =D /C E =D . 4,3
p P/ p p P/CP 4.3)
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L'isomorphisme (2. 5) devient:
E ~B, /B, (4. 4)

et se démontre en utilisant le diagramme:

H(A H(A ) C 0

N

A, A A, A —_— 0
H( ] p)"H( s p_l) Dp

B B

lp 1p—l

0 ———= 0

Le diagramme (2. 6) devient, aprés avoir élevé tous les indices
de k:

o
HA o Ap) ~— HA L Api 1)
v 0
B
H(Ap, Ap_l) H(Ap+k-1’ Ap_l)
avec:
Image de B = Dl; ) Dl;+1 = Noyau de y
k+1 k
Image de 6 = Cp+k ) Cp+k = Noyau de o .

Ainsi 63'1 donne:
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qui définit les

. pkK k
A .Dp H(Ap+k, Ap+k_1)/Cp+k,

k
Ej iy

a& . g -
p p
avec les mémes propriétés que ci-dessus.

La discussion séparée du cas contravariant peut étre évitée
en utilisant 1'astuce suivante: on considére l'ensemble partielle-
ment ordonné S* obtenu en renversant 1'ordre de 1'ensemble
original S. La théorie contravariante H sur S donne alors une
théorie covariante sur S*. Ceci permet de transporter les

résultats par un simple changement de notations.

5. Le cas algébrique

Suit A un module (sur un certain anneau ~) muni d'une
dérivation d. Nous considérerons 1'ensemble de tous les sous-
modules de A, stable vis-d-vis de d, avec la relation d'ordre
définie par l'inclusion. Si (A', B') est une paire dans cet
ensemble, alors A'/B' est un module A dérivation, et nous pouvons

poser:
H(A', B') = HA'/B").

Une inclusion (A’, B') < (A", B") définit un homomorphisme
permis de A'/B' dans A"/B", et induit donc un homomorphisme
H(A', B') -~ H(A", B"). Untriple (A', B', C') donne une suite

cxacte:

0-B'/C'~A'/C'~A'/B' 0,
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qui donne un opérateur d: H(A', B') - H(B', C'). Les axiomes
(H.1), ..., (H.4) se vérifient tout de suite.

Supposons maintenant que nous nous soyons donné une suite
- -
.CAp Ap+1 ... CTA,

La théorie précédente donne des groupes gradués Ek, avec

dérivations d° telles que EX ' = H(EY), k=1, 2, ... .
Posons:
E°=A /A ., E°—SA /A _,
p "p’p-l p P p-1

soit d° 1'opérateur de dérivation de E; induit par celui de A,
et soit d° la dérivation que en résulte dans E°. Puisque
1 .
Ep = H(Ap/Ap_l), on a:
E' = HE").

Ainsi, dans le cas algébrique, on peut étendre la suite des
{Ek}, en acceptant la valeur k = o.
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EXACT COUPLES IN ALGEBRAIC TOPOLOGY

(Parts I and IT)
By W. 8. Massey
(Received December 11, 1951)
Introduction!

The main purpose of this paper is to introduce a new algebraic object into
topology. This new algebraic structure is called an exact couple of groups (or of
modules, or of vector spaces, etc.). It apparently has many applications to prob-
lems of current interest’in topology. In the present paper it is shown how exact
couples apply to the following three problems: (a) To determine relations between
the homology groups of a space X, the Hurewicz homotopy groups of X, and cer-
tain additional topological invariants of X; (b) To determine relations between
the cohomology groups of a space X, the cohomotopy groups of X, and certain
additional topological invariants of X; (¢) To determine relations between the
homology (or cohomology) groups of the base space, the bundle space, and the
fibre in a fibre bundle.

In each of these problems, the final result is expressed by means of a Leray-
Koszul sequence. The notion of a Leray-Koszul sequence (also called a spectral
homology sequence or spectral cohomology sequence) has been introduced and
exploited by topologists of the French school. It is already apparent as a result
of their work that the solution to many important problems of topology is best
expressed by means of such a sequence. With the introduction of exact couples, it
seems that the list of problems, for which the final answer is expressed by means
of a Leray-Koszul sequence, is extended still further.

This paper is divided into five parts. The first part gives the purely algebraic
aspects of the idea of an exact couple. The remaining four parts give applications
of the algebraic machinery developed in part one to topological problems. Part
two shows how exact couples may be applied to express relations between the
homology and homotopy groups of a space, and certain new groups which are
topological invariants of the space. Part three treats what may be called the dual
situation. Exact couples are applied to obtain relations between the cohomology
and cohomotopy groups of a space. In part four the duality which exists between
the applications in parts two and three is given a precise formulation, and con-
nection is made with the usual duality between the homology and cohomology
groups of a space. In both parts two and three the relations involved are expressed
by means of a Leray-Koszul sequence, and it seems rather unlikely that these
Leray-Koszul sequences could be obtained from a differential-filtered group.

' An abatraot of the principal results of this paper was submitted to the American Mathe-
mationl Roolety in Maroh, 1081, of. Bull. Amer. Math. Soc., §7 (1951), pp. 281-282,
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The fifth and last part applies the theory of exact couples to the study of the
cohomology structure of a fibre bundle for which the base space is n cell complen
A Leray-Koszul sequence is obtained which gives relations hetween the ¢oho
mology groups of the base space, bundle space, and fibre. The results obtuined
in this case are included among those obtained by Leray [11] under more general
hypotheses. Furthermore, we have not included the multiplicative structire of
the cohomology ring into the Leray-Koszul sequence obtained, and thus our re
sults are not as complete as those of Leray. This application of exact conples to
obtain the Leray-Koszul sequence of a fibre bundle is published in spite of these
shortcomings mainly because it is our belief that the methods we use are closer
to the usual methods of algebraic topology, and hence can be understomd by 1host
topologists with less effort than the methods of Leray. They should serve ax nn
introduction to the important papers of Leray.

The notations, definitions, and conventions used for homology, cohomology,
homotopy, and cohomotopy groups are collected together for ready reference in
the appendix. Here also are contained the explicit statements of some lemnins
from homotopy theory which are needed.

Parts T and II are published in the present issue of these ANNa1s; paris §1,
IV, and V will appear in these ANNALS in the near future.

PART I. GENERAL ALGEERAIC THEORY
1. Differential Groups

The principle algebraic objects with which we shall be concerned in this pmper
are abelian groups with certain additional elements of structure, together with
certain homomorphisms of these abelian groups.

Let A be an abelian group. An endomorphism d:4 — 4 is called a differential
operator if & = 0 (i.e., d[d(a)] = O for any a ¢ A). A differential group i n puir
(A, d) consisting of an abelian group A and a differential operator d. If (A, ) ix
a differential group, we will denote by Z(A4) the kernel of d, and by (A4 ) theimage,
d(A). Both are subgroups of 4, and from d* = 0, it follows that ®(A) C Z(4).
The factor group Z(A4)/®(A) will be denoted by 3C(A), and called the derived
group.

Let (4, d) and (4’, d') be differential groups; a homomorphism f:4 » A’
is called allowable if the commutativity relation d’ - f = f « d holds. Buch nn
allowable homomorphism f has the property that f[Z(A4)] € Z(A’) and fl®(A)|
C ®(4’), and hence f induces a homomorphism f*:3¢(4) — 3C(A’). Thin opern
tion of assigning to each allowable homomorphism the induced homomarphinm
of the derived groups has the following two obvious, but important, properties
(1) The identity homomorphism ¢7:4 — A is allowable, and the indueed homo
morphism *:3C(A) — 3C(A) is also the identity. (2) Let (4, d), (A’, d'), and
(A”, d”) be differential groups, and let f:A — A4', g:4’ — A” be allowable
homomorphismns. Then the composition g - f:A — A” is also allowahle, and
(g + N* = ¢g* + /*. In the language of Eilenberg and MacLane (3], theso two fuetn
may be conveniently expressed by saying that the set of all differential groups nnl
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allowable homomorphisms constitutes a category, and the operation of assigning
to each differential group its derived group and to each homomorphism its in-
duced homomorphism is a covariant functor.

Let (A, d) and (A, d’') bedifferential groups, andf, g:4 — A’ allowable homo-
morphisms. Then f and g are said to be algebraically homotopic (notation: f ~ ¢)
if there exists a homomorphism £: A — A’ which satisfies the following condition:

f—g=d t+E-d

It is readily verified that this relation is an equivalence relation. Furthermore, if
fand g are algebraically homotopic, then the induced homomorphisms f*, g*:3¢(4)
— 3C(A’) are the same.

A subgroup B of a group A with differential operator d is said to be allowable
if d(B) C B; if this is the case, then d defines differential operators on B and on
the factor group A/B in an obvious fashion; furthermore, the inclusion homo-
morphism B — A4 and the natural projection of 4 onto the factor group A/B are
both allowable homomorphisms in the above mentioned sense.

2. Graded and Bigraded Groups

An abelian group A is said to be graded, or to have a graded structure, if there is
prescribed a sequence of subgroups, A, ,n =0, & 1, & 2, - -- , such that 4 can
be expressed as a direct sum,

A =214,
An abelian group 4 is said to be bigraded, or to have a bigraded structure, if there
is prescribed a double sequence of subgroups, Ams, m,n =0, = 1, £ 2, ---,
such that A = 2 .maAm.. In case of a graded group, A = Y.n An, the ele-
ments of the subgroup A, are said to be homogeneous of degree p; in the case of a
bigraded group, A = D ... Am.., the elements of the subgroup 4, . are said to
be homogeneous of degree (p, q).

When dealing with graded or bigraded groups, only a certain limited class of
homormorphisms are of interest, the so-called homogeneous homomorphisms.
If4A =) A.and B = Y. B, are graded groups, then a homomorphism
f:A — Bis said to be homogeneous of degree p provided f(Am) € Bmy, for all val-
uesof m. f A =2 Aw.and B = > B,.,. are bigraded, then a homomor-
phism f:A — B is homogeneous of degree (p, q) provided f(Am) € Bmipnta
for all pairs (m, n). Note that the identity homomorphism of a graded or bigraded
group onto itself is homogeneous, and that the composition of two homogeneous
homomorphisms is again homogeneous.

Let A = Y An.. be a bigraded group; a subgroup B C A is said to be allow-
able (with respect to the bigraded structure) in case B = Y. (BN A...). If this
is true, then B has a bigraded structure defined by B = Y Bn.., Where B, , =
BN A,.. We will express this fact by saying that the allowable subgroup B
tnherits a bigraded structure from 4. It is readily verified that the factor group
A/B is isomorphic to the direct sum Y A n n/Bm.x ; moreover, this isomorphism
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is natural in the sense of Eilenberg and MacLane [3]. We will agree to identify
these naturally isomorphic groups. This representation of 4A/B as a direct sum
defines a bigraded structure on A /B. This bigraded structure will also be referred
to as the bigraded structure that A/B inherits from 4.

It is clear how to define in an analogous way the concept of an allowable sub-
group of a graded group, etc. Note that the kernel and image of a homogeneous
homomorphism are always allowable subgroups.

Often in algebraic topology we have to deal with differential groups which also
have a graded (or bigraded) structure, and for which the differential operator is
homogeneous. In this case the derived group inherits a graded (or bigraded)
structure from the given group.

If A and G are abelian groups, then we will use the notation A @ G to denote
their tensor product (see Whitney, [24]). If (4, d) is a differential group, and ¢
is an arbitrary abelian group, then we define a differential operator d’:4 ® G
— 4 @ G in the obvious way:

da®g) =(da) @ ¢

foranyaeAd andg eG.If A = Y. A” is a graded group, then the direct sum
decomposition

A®G=2(4"0® G),
defines a graded structure on the tensor product 4 ® G. An analogous definition
is applicable in case A is a bigraded groyp. If (4, d) is a differential group, and
G is an abelian group, then for the sake of convenience we will use the notation
(A, G) for the derived group of (A @ G, d");i.e., 3(4,G) = (4 @ G).

3. Definition of a Leray-Koszul Sequence
A sequence of differential groups, (A", d"), where the index n ranges over all
integers larger than some given integer N, is called a Leray-Koszul sequence in
case each group in the sequence is the derived group of the preceding:
A = geam).
In a Leray-Koszul sequence there exist natural homomorphisms
kniZ(A™) — A,

x» is defined by assigning to each element of the subroup Z(A") its coset modulo
®(A™). Thus x, is & homomorphism of a subgroup of 4" onto A™*'. We will define
a homomorphism % of a subgroup of A" onto A™*? by the formula

P
Kn = Knipp1 ® Knyp-g® " ¢ Kp.

Then «%, = x, . The precise definition of the domain of definition of «% is left to the
reader. Let A™ denote the subgroup of A™ consisting of these elements a ¢ 4™
such that x2(a) is defined for all values of p. Define z. : 4 — A™*! to be the re-
striction of «. to the subgroup A™. Then the scquence of groups {A*} and homo-
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morphisms {%.] constitutes a direct sequence of groups in the usual sense (see,
for example, {10, ch. VIII, definition VIII 12]). The limit group of this direct
sequence of groups will be called the limit group of the given Leray-Koszul se-
quence.

In most cases we shall have to deal with Leray-Koszul sequences (4", d") for
which each of the groups A™ is bigraded, A™ = X A3, each of the differential
operators d” is homogeneous, and A™* inherits its bigraded structure from 4",
In this case each of the homomorphisms «, is homogeneous of degree (0, 0), and
there is determined a bigraded structure on the limit group in a natural way.
Also, it will usually be true that for each pair of integers (p, ¢) there exists an
integer N such thatif n > N, then x, maps 4}, isomorphically onto 4 3} . This
makes it possible to determine any homogeneous component of the limit group by
an essentially finite process.

4. Definition of an Exact Couple; The Derived Couple

An ezact couple of abelian groups consists of a pair of abelian groups, 4 and C,
and three homomorphisms:

f:A oA,
g:A - C,
h:C — A,

These homomorphisms are required to satisfy the following ‘“‘exactness’ condi-
tions:

image f = kernel g,
image g = kernel A,
image h = kernel f.

These three conditions can be easily remembered if one makes the following tri-
angular diagram,

A \—f—m
N7

and observes that the kernel of each homomorphism is required to be the image
of the preceding homomorphism. We shall denote such an exact couple by the
notation {4, C;f, g, h). When there is no danger of confusion, we shall often ab-
breviate this to {4, C).

There is an important operation which assigns to an exact couple {4, C;
1, 9, h) another exact couple, (4’, C'; f', ¢’, h'), called the derived exact couple.
This derived exact couple is defined as follows.
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Define an endomorphism d:C ~ Cbyd =go-h. Thend* =d.d = g-h .
g - h = 0, since h - g = 0 by exactness. Therefore d is a differential operator. Let
C' = 3¢(C), the derived group of the differential group (C, d). Let 4’ = f(4) =
image f = kernel g. Define f': A’ — A’ by f' = f| A’, the restriction of f to the
subgroup A’. The homomorphism &':C’ — A4’ is induced by A: it is readily veri-
fied that A[Z(C)) c A’, and A{®(C)] = 0, hence k induces a homomorphism of
the factor group C'= Z(C)/®(C) into A’. The definition of ¢’: A’— C’ is more
complicated. Let a ¢ A’; choose an element b ¢ A such that f(b) = @. Then
g(b) ¢Z(C), and ¢’(a) is defined to be the coset of g(b) modulo ®(C). It is easily
verified that this definition is independent of the choice made of the element
b ¢ A, and that ¢ is actually a homomorphism.

Of course, it is necessary to verify that the homomorphisms f’, ¢’, and A’ satisfy
the exactness condition of an exact couple. This verification is straightforward,
and is left to the reader.

It is clear that this process of derivation can be applied to the derived exact
couple {4, C’; f', ¢/, k') to obtain another exact couple (4”7, C”; f”, ¢g”, "),
called the second derived couple, and so on. In general, we shall denote the ntt
derived couple by (4™, C'™; f™, g™, ™),

6. Maps of Exact Couples
Let (A4, C;f, g, k) and {40, Cs ; fo, go , ho) be two exact couples; a map,
@ ¥):{4,C;f,g,h) > (4, Co; fo, o, ho)
consists of a pair of homomorphisms,
4> A,
v:C—> G,
which satisfy the following three commutativity conditions:
¢ f=/f"e
Vv g=go°¢
¢°h=hey.
Ifd = g° h:C — C and dy = go*ho:Co — C, denote the differential operators on

C and C, respectively, then our definitions imply the following commutativity
relation:

Vod=dooy.

Therefore ¢ is an allowable homomorphism, in the sense defined in the preced-
ing section, and hence induces a homomorphism

\VZC'-’C(')

of the corresponding derived groups. Also, it is clear that ¢(4’) C Aq; therefore
¢ defines a homomorphism

¢ A" > Ag.
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It can now be verified without difficulty that the pair of homomorphisms
(¢', ¢') constitute a map of the first derived exact couples,

@', ¥): {4, C") > (4o, Cs)
in the sense just defined. We will say that the map (¢’, ¥') is induced by (¢, ¥).
By iterating this process, one obtains a map (¢ ,¢™): (4™,c™) = 4P ,C)
which is induced by the given map (g, ¥).

The set of all exact couples and maps of exact couples constitutes a category
in the sense of Eilenberg and MacLane [3], and the operation of derivation is a
covariant functor.

Let (¢01 ¥o) and (¢l, lﬁ)):(A,C; f1 9, h) - (Ao ) Co ;fo s go, ho) be two maps of
exact couples in the sense we have just defined. The maps (¢v, ¥o) and (¢1, ¥1)

are said to be algebraically homotopic® (notation: (¢o , ¥o) = (¢1, ¥1)) if there exists
a homomorphism ¢:C — € such that for any element ¢ ¢ C,

¥(e) — %ole) = Hd(e)] + dilé(c)],

and for any a ¢ 4,

$i(a) — do(a) = hokg(a).

It is readily verified that the relation so defined is reflexive, transitive, and
symmetric, and hence is an equivalence relation. The main reason for the im-
portance of this concept is the following proposition:

THEROEM 5.1. If the maps

(¢0’ 'Po), (¢l, ‘h):(Ai C;f: g, h) - (AoCo ;fo » 9oy hﬂ>

are algebraically homotopic, then the induced maps (¢o , o) and (¢1, ¥1) of the de-
rived couples are the same.

The proof is entirely trivial. It follows that the induced maps of the n*® derived
couples, ('3, ¢'37) and (@', ¢']?) are also the same.

6. Bigraded Exact Couples; The Associated Leray-Koszul Sequence

In the applications later on it will usually be true that groups occurring in the
exact couples with which we are concerned will be bigraded groups, and that all
the homomorphisms involved will be homogeneous homomorphisms. Then the
groups of the successive derived couples will inherit a bigraded structure from the
original groups, and the homomorphisms in the successive derived couples will
also be homogeneous. To be precise, if (4, C; f, g, h) is a bigraded exact couple,
and (4', C'; ', ¢', k') denotes the first derived couple, then f’ and f have the same
degree of homogeneity, as do A’ and h; however, the degree of homogeneity of ¢’
is that of g minus that of f.

Let (A C;f, g, h) be an exact couple, and let (4™, C™; 5™ o™ ™), n =
1,2, - - - denote the successive derived couples. Let d'™ = (") h"‘) oo RN C‘")
denote the differential operator of C'™. Then the sequence of differential groups

¥ Thia definition is patterned after a similar one given by J. H. C. Whitehead, [20].
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(€™, d'™) is a Leray-Koszul sequence. It will be referred to as the Leray-Koszul
sequence associated with the exzact couple (A, C).

—

9.

10.
11.

12.
13.
14,
15.
16.

17.
18.

19.
20.
21.
22.
23.

24.
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The scope of the next paper has been explained in $§6.
one of the later papers, it assumes a fair familiarity with the

machinery of algebraic topology.
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b THE COHOMOLOGY OF CLASSIFYING
SPACES OF H-SPACES

BY M. ROTHENBERG AND N. E. STEENROD!
Communicated by N. E. Steenrod, June 17, 1965

Let G denote an associative H-space with unit (e.g. a topological
group). We will show that the relations between G and a classifying
space Bg are more readily displayed using a geometric analog of the
resolutions of homological algebra. The analogy is quite sharp, the
stages of the resolution, whose base is Bg, determine a filtration of
Bg. The resulting spectral sequence for cohomology is independent
of the choice of the resolution, it converges to H*(Bg), and its E;-
term is Extmp (R, R) (R=ground ring). We thus obtain spectral
sequences of the Eilenberg-Moore type [5] in a simpler and more
geometric manner,

1. Geometric resolutions. We shall restrict ourselves to the cate-
gory of compactly generated spaces. Such a space is Hausdorff and
each subset which meets every compact set in a closed set is itself
closed (a k-space in the terminology of Kelley [3, p. 230]). Subspaces
are usually required to be closed, and to be deformation retracts of
neighborhoods.

Let G be an associative H-space with unit e. A right G-action on a
space X will be a continuous map X XG—X with xe=x, x(g:g.)
= (xg1)g: for all x€ X, gy, g,EG. A space X with aright G-action will
be called a G-space. A G-space X and a sequence of G-invariant closed
subspaces XoCX1C - - - CXaC - - -suchthat X, =, X =U", X,
and X has the weak topology induced by {X,} will be called a
filtered G-space.

1.1. DEFINITION. (a) A filtered G-space X is called acyclic if for
some point x¢&E X,, X, is contractible to x, in X, for every n.

(b) A filtered G-space X is called free if, for each n, there existn a
closed subspace D, (XA CD,CX,) such that the action mapping
(Dny Xa1) XG—(Xn, Xn) is a relative homeomorphism.

(c) A filtered G-space X is called a G-resolution if X is both free
and acyclic.

Under the restrictions we have imposed on subspaces, the acyclic-
ity condition implies that X is contractible.

1 This work was partially supported by the National Science Foundation under
NSF grants GP 3936 and GP 2425.
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1.2. THEOREM. If G is a topological group, any G-resolution X is a
principal G-bundle over Bg=X/G with action X XG—X as principal
map.

When G is a topological group, Milnor’s construction [4], where
X, is the join of n+1 copies of G, is a G-resolution. In the general
case, the existence of a G-resolution is given by the Dold-Lashof con-
struction [2].

There is also a comparison theorem. Let G, G’ be H-spaces, ®: G
—G' a morphism, X, X’ filtered G, G'-spaces. An extension ' of &
is a map ¢': XX’ with &(X,) CX,) and ®&'(xg) =®'(x)P(g). If
d’, " are two extensions of &, a homotopy k will be a map h: X XI
— X' with hy=®, hh=3", W( X, XI) CXl1, and h(xg, t) =h(x, )®(g).

1.3. MaprPING THEOREM. If ®: G—G’ is a morphism, X a free filtered
G-space, X' an acyclic filtered G'-space, then P has an extension &':
X—X'. Furthermore, any two such extensions are homotopic.

Thus in particular, for any two resolutions X, X’ of G there exists
an equivariant u: X—X’, unique up to equivariant homotopy.

We define the product of two filtered spaces X, X’ to be the prod-
uct space X X X' filtered by (X X X")n=Uly XiX X0 s.

1.4. TEEOREM. If X is a G-resolution and X' a G'-resolution, then
XX X' is a GXG'-resolution.

2. The spectral sequence. When X is a G-resolution, let B=X/G
denote the decomposition space by maximal orbits, let p: X—B be
the projection and B, =p(X.). lf R is a coefficient ring, the filtration
{B.} of B determines two spectral sequences, the homology spectral

sequence E4(B, R)={E", d,} and the cohomology spectral sequence
E*(B, R)={E,, d'}.

2.1. TueoreM. (a) The spectral sequences Ey, E* are functors from
the category of H-spaces and continuous morphisms to the category of
bigraded spectral sequences. (We regard all spectral sequences as be-
ginning with E*, E,.)

(b) If the homology algebra H(G)=H(G; R) is R-free, then as a
bigraded R-module

E'= Tortf@ (R, R),  E»2 Extag) (R, R).
(c) E«=H(B;R). If Riscompactor H(G) is free then E*=H*(B; R).

Proposition (a) follows from 1.3, (c) is true in any filtered space,
and (b) is proved using the Milnor-Dold-l.ashof construction, in fact
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the E'-term in this case is precisely the bar resolution of K aver the
algebra H(G).

In order to deepen these results to include products, we develap
the theory of X-products for the spectral sequences of filtered spacen
X,Y. These are mnatural transformations u: E(X) ® LE'(Y)
—E(XXY),v: EX)Q®E(Y)—E,(X X Y) which behave nicely with
respect to differentials. They are isomorphisms when R is a field and
Ey(X) is of finite type.

The diagonal morphism A: G—G X G induces, by 2.1(a), a mapping
of the cohomology spectral sequences A*: E,(BgXBg)—E.(Bg).
Composing A* with » (where X = Y=Bg) gives the multiplication in
E.,.

2.2. THEOREM. With respect to this multiplication, E,(Bg) is a com-
mutative, assoctative, bigraded, differential algebra with unit. The multi-
plication on E,. is induced by that on E,. The multiplications commute
with the convergence 2.1(c). When H(G) is R-free, the second isomorphism
of 2.1(b) preserves producis.

When R is a field, the composition u~!A« defines a co-algebra struc-
ture in the homology spectral sequence having dual propertics.

3. Co-algebra structure. We assume in this section that R is a
field and H(G) is of finite type. When G is commutative the mnlti-
plication m: G XG—G is also a morphism. Then the composition meu
gives an algebra structure on Ey, and v—!'m* a co-algebra structure in
E*. Actually the same is true if G is the loop space of an H-space.
This yields

3.1. THEOREM. If G is commultative or the loop space of an H-space,
then E,, ET are bicommulative, biassociative, differential, bigraded Ilopf
algebras with (Er, d,) the dual algebra to (E,, d7). The Hopf algebra
structure on E;=Extg a)(R, R) ts the natural one arising from the Hopf
algebra structure on H(G). Moreover if G is connected and R is perfect,
then E, ts primitively generated on elements of bi-degree (1, q), (2, ¢'),
and d~=0 except for r =p*—1 or 2p* —1 where p = Char R. If (G =(I1),
H homotopy associative, then E,=~ H*(B; R) as an algebra.

Actually one can give an explicit description of E,.1 in terms of
E. and dr(x!-9), d"(x?.7"), where x!:¢, x2.¢' are primitive gencrators.

4. Applications. Moore pointed out [5] that his spectral sequence
gives an easy proof of the theorem of Borel which states: If 1{(G) s
an exlerior algebra with generators of odd dimensions and is R-free,
then H*(Bg) is a polynomial algebra on corresponding gencrators of one
higher dimension. Moore argues that a brief computation shows that
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the Ei-term, Extp(e(R, R), is just such a polynomial algebra. Then
all terms of E, of odd total degree are zero. Hence every d"=0, so
E;=E,. Since E, is a polynomial algebra, it is algebraically free; and
therefore H*(Bg) =E, as an algebra.

An Eilenberg-MacLane space of type (m, #) can be realized by a
commutative topological group G, and its B¢ is of type (w, n+41).
Consequently H(w, n) and H*(w, n-}+1) are connected by a spectral
sequence of Hopf algebras E,(Bg).

4.1. TEEOREM. If G is of type (w, n), ™ is a finilely generated abelian
group, and R=2Z, where p is a prime, then the spectral sequence col-
lapses

Exta@)(Zp Z,;) = E; = E, =~ H*(Bg).

This implies that H*(r, n; Z,) is a free commutative algebra for
every n. In fact an algorithm is obtained for computing H*(w, n; Z,)
as a primitively generated Hopf{ algebra over the algebra of reduced
pth powers. These results confirm and amplify results of H. Cartan.

For another application, let K be a compact, simply-connected Lie
group, and let G be the loop space of K. Using Bott's result [1] that
H(G; Z) is torsion {ree, we obtain

4.2. THEOREM. (a) If p>S5, the spectral sequence collapses
Exta6)(Zp Zp) = Es= E, =~ H*(K; Z,) =~ A(%, - - -, %)

where x,, + - -, X, are generators of the dimensions of the primitive in-
variants of K. In particular K has no p-torsion, and H*(K; Z,)
~H*K; Z)®Z,.

(b) If p=3 or 5, there is at most one nonzero differential, namely,
a1, Moreover H*(K; Z,) and Hy(G; Z,) can be constructed explicitly
from the Betti numbers of K and the dimensions of the kernels of the
maps x—x? and x—x*" where xCHXG; Z,).

(c) For any p>2, we have u»=0 for all u€ A*(K; Z,).
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The next extract contains the major part of Serre's elegant
and important paper on Eilenberg-MacLane spaces. The scope and
usefulness of this paper has been explained in §7. This work is
perhaps one of the main sources for the idea of 'universal example'
or representablefunctor’ (see also the application of the same idea
to homotopy summarised in paper 7). The paper is fairly self-
contained but it leans heavily on a theorem of A. Borel. For this,
see the remarks and references in §6 plus Adams chap. 2, p. 11.
The student might find the paper easier if he is familiar with
homology theory before reading it; but equally, reading this paper
would be a good way to acquire familiarity with homology theory.
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Cohomologie modulo 2 des complexes
d’Eilenberg-MacLane

Par JEAN-PIERRE SERRE, Paris

Introduction

On sait que les complexes K (11, q) introduits par Eilenberg-MacLane
dans [4] jouent un rdle essentiel dans un grand nombre de questions de
topologie algébrique. Le présent article est une contribution & leur étude.

En nous appuyant sur un théoréme démontré par A. Borel dans sa
thése [2], nous déterminons les algébres de cohomologie modulo 2 de
ces complexes, tout au moins lorsque le groupe /7 posséde un nombre
fini de générateurs. Ceci fait I'objet du § 2. Dans le § 3 nous étudions le
comportement asymptotique des séries de Poincaré des algébres de coho-
mologie précédentes ; nous en déduisons que, lorsqu’un espace X vérifie des
conditions trés larges (par exemple, lorsque X est un polyédre fini, sim-
plement connexe, d’homologie modulo 2 non triviale), il existe une in-
finité d’entiers ¢ tels que le groupe d’homotopie z;(X) contienne un
sous-groupe isomorphe & Z ou 4 Z,. Dans le § 4 nous précisons les rela-
tions qui lient les complexes K(I1, q) et les diverses «opérations coho-
mologiques»; ceci nous fournit notamment une méthode permettant
d’étudier les relations entre i-carrés itérés. Le § 5 contient le calcul des
groupes 7, ;(S,) et =, ,(S,); ce calcul est effectué en combinant les
résultats des §§ 2 et 4 avec ceux d’une Note de H. Cartan et I'auteur
([3], voir aussi [14]). Les §§ 4 et 5 sont indépendants du § 3.

Les principaux résultats de cet article ont été résumés dans une Note
aux Comptes Rendus [9].

§ 1. Préliminaires
1. Notations

Si X est un espace topologique et G un groupe abélien, nous notons
H,(X.,Q) le i-éme groupe d’homologie singulitre de X & coefficients
dann 7 ; nous posons H_(X,G) = X7, H,(X,G), le signe X' représen-

tant une xomme directe,
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De fagon analogue, nous notons H*(X, ) les groupes de cohomologie
de X, et nous posons H*(X,G) = Y7 ,H! (X, Q).
Les groupes d’homologie et de cohomologie relatifs d'un couple (X, Y)
sont notés H,(X,Y ;@) et H{(X,Y ; Q).
Nous notons Z le groupe additif des entiers et Z, le groupe additif des
entiers modulo %.

2. Les i-carrés de Steenrod

N. E. Steenrod a défini dans [12] (voir aussi [13]) des homomorphis-
mes :
S¢t: HMX,Y ;Z,) - H*(X,Y;Z,) (i entier > 0) ,

ot (X,Y) désigne un couple d’espaces topologiques, avec Y X. Ces
opérations ont les propriétés suivantes?):

2.1. S¢tof* = f*o8¢% lorsque f est une application continue d’un
couple (X,Y) dans un couple (X', ¥’).

2.2. 8¢*0 8 = 808¢', & désignant le cobord de la suite exacte de
cohomologie.

2.3. S¢i(z-y) =2, 4-; 8¢ ()-8q*(y), - y désignant le cup-produit.

2.4. Sq¢i(z) =22 8i dim.z =14, S¢*(z) = 0 si dim. z<s.

2.5. S¢°(z) = .

On sait que toute suite exacte 0 - 4 - B —~ C — 0 définit un opé-
rateur cobord 6: H"(X,Y;(C) - H*+'(X,Y ; A). En particulier:

2.6. Sq! coincide avec l'opérateur cobord attaché & la suite exacte

0->2,>2,>2%2,—>0 .

On a donc une suite exacte :
Sq!

2.7. ...>H" (X,Y;Z,)~>H"X,Y;Z,) >H"\(X,Y; Z,)
- H""\W(X,Y;Z) —>.
3. Les i-carrés itérés

On peut composer entre elles les opérations S¢f. On obtient ainsi les
i-carrés itérés Sq'o8q¢'to...08q¢' qui appliquent H"(X,Z,) dans le
groupe H*+%+---+ir(X 7). Une telle opération sera notée Sq’, I dé-
signant la suite d’entiers {i,,...,¢,}. Nous supposerons toujours que

1} Ces propriétés sont démontrées dans [12], & 1'exception de 2.3, dont on trouvera la
démonstration dans une Note de H. Cartan aux Comptes Rendus 280, 1950, p. 425.
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les entiers ;,...,%, sont > 0 (ceci ne restreint pas la généralité, a
cause de 2.5).

Les définitions suivantes joueront un réle essentiel par la suite :
3.1. L’entier n(l)=1¢, +---+ 4, est appelé le degré de I.
3.2. Une suite I est dite admissible si 'on a :
By = 285,85 = 245, ..., by = 28, .
3.3. Si une suite I est admissible, on définit son excés e(I) par:
e(I) = (iy — 2ia) + (i — 2i5) +- - Gry — 23,) + 4,

=y — by — ... — 4y =25, — n() .

Par définition, e(I) est un entier > 0, et si ¢(l) = 0 la suite I est
vide (Uopération S¢’ correspondante est donc I'identité).

4. Les complexes d’Eilenberg-MacLane

Soient ¢ un entier, /7 un groupe (abélien si ¢ > 2). Nous dirons qu’un
espace X est un espace K(II,q) si =, (X)=0 pour ¢ts4¢q, et si
7,(X) = I1. On sait (cf. [4]) que les groupes d’homologie et de cohomo-
logie de X sont isomorphes & ceux du complexe K (17, q) défini de fagon
purement algébrique par Eilenberg-MacLane. Nous noterons ces groupes
H,Il;q,Q@) et H'(II;q,@d), Q étant le groupe de coefficients.

Pour tout couple (II,q) il existe un espace X qui est un espace
K1, q) (cf. J. H.C. Whitehead, Ann. Math. 50, 1949, p. 261—263).
Soit X’ le complexe cellulaire obtenu en «réalisant géométriquement»
le complexe singulier de X ?); on sait que n,(X’) = n,(X) pour tout
i >0, donc X’ est un espace K(I1,g). Comme d’autre part on peut
subdiviser simplicialement X’, on obtient finalement :

4.1. Pour tout couple (II,q) il existe un espace K(II,q) qui est un
complexe stmplictal.

(Ici, comme dans toute la suite, nous entendons par complexe simplicial
un complexe K qui peut avoir une infinité de simplexes et qui est muni
de la topologie faible : une partie de K est fermée i ses intersections avec
les sous-complexes finis de K sont fermées.)

') 1 'eapace X’ est défini et étudié dans les articles suivants: 1) J. B. Giever, On the
sgquivalonce of two singular homology theory, Ann. Math. 51, 1950, p. 178—191;
8) J. H, (. Whitehead, A certain exact sequence, Ann. Math. 52, 1950, p. 51—110
{volr astammeont Jos nos 19, 20, 21),
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5. Propriétés élémentaires des espaces K (77, q)

5.1. Pour tout couple (11, q) il existe un espace fibré contractsle dont la
base est un espace K(II,q) et dont la fibre est un espace K(II,q - I).
Rappelons ([8], p. 499) que I’'on obtient un tel espace fibré en prenant
Pespace des chemins d’origine fixée sur un espace K(/1, q).
L’énoncé suivant est évident:

5.2. 8i X est un espace K(I1,q) et st X' est un espace K(I1',q), le
produit direct X x X' est un espace K(II + IT', q).

Soit maintenant X un espace K (I, g), le groupe II étant abélien (ce
n’est une restriction que si ¢ =1). On a alors H (X,Z)=1I, d'ou
He(X,II) = Hom (I1,II). Le groupe H%(X,6II) contient donc une
«classe fondamentale» % qui correspond dans Hom (77, IT) & l'applica.
tion identique de /7 sur I71. Soit alors f: ¥ — X une application continuo
d’un espace Y dans l'espace X ; I’élément f*(u) est un élément hion
défini de H?(Y,1II) et il résulte de la théorie classique des obstructions
(cf. S. Eilenberg, Lectures in Topology, Michigan 1941, p. 57—100) que
I'on a:

5.3. St Y est un complexe simplicial, f — f*(u) met en correspondance
biunivoque les classes d’homotopie des applications de Y dans X et les €lé-
ments de H(Y, II).

(On trouvera dans [5], IV un résultat trés proche du précédent.)

Si Y est un espace K(I1’,q), on a HY(Y,II) = Hom (I1’,II), d’alr:

5.4. St un complexe simplicial Y est un espace K(IT', q), les classes
d’homotopie des applications de Y dans un espace K(II,q) correspondent
biunivoquement aux homomorphismes de IT' dans I1 .

6. Fibrations des espaces K(I1, ) ®)
Donnons-nous un entier ¢, et une suite exacte de groupes abélions :
0>-4A->B->C—>0.
6.1. Il existe un espace fibré E, de fibre F et base X , ou F eat un eapace
K(A,q), E un espace K(B,q), X un espace K(C,q), et dont la auite
exacte d’homotopie (en dimension q) est la suite exacte donnée.

Soient ¥ un complexe simplicial qui soit un espace K(B,gq), X un
espace K(C,q) et f: ¥ — X une application continue telle que

fo: nq(Y) '—*nq(X)
goit ’homomorphisme donné de B sur C (cf. 5.4).

3) Ces fibrations m’ont été signalées par H. Cartan.
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On prend pour espace E I'espace des couples (y, «(f)), ol y €Y, et
olt «(t) est un chemin de X tel que «(0) = f(y). L’espace E est rétrac-
tile sur ¥, c’est donc un espace K(B, ). L’application (y, «(t)) - «(1)
fait de £ un espace fibré de base X (c’est une généralisation immédiate
de la Proposition 6 de [8], Chapitre IV). La suite exacte d’homotopie
montre alors que la fibre F de cette fibration est un espace K(C, q);
plus précisément, la suite :

Hoy1 (X) = 7 (F) - 7 (E) > 7 (X) > 7,y (F) ,
est identique & la suite exacte 0 > 4 -~ B — C — 0 donnée.

On montre de fagon tout analogue I’existence d’un espace fibré ot :

6.2. L’espace fibré est un espace K(A4,q), la fibre est un espace
K(C,q — 1) et la base est un espace K(B, q).

De méme, il existe un espace fibré ol :

6.3. L’espace fibré est un espace K(C,q — 1), la fibre est un espace
K(B,q — 1) et la base est un espace K(4, q).

§ 2. Détermination de I’algdbre H*(IT; ¢, Z,)

7. Un théoréme de A. Borel

Soient X un espace et A = H*(X, Z,) I'algébre de cohomologie de X
a coefficients dans Z,. On dit ([2], Définition 6.3) qu’une famille (x,)
(z=1,...), d’éléments de A est un systéme simple de générateurs de 4
si:

7.1. Les z, sont des éléments homogénes de 4,

7.2. Les produits =z,.%, ..., (4;<8<---<i,r>0 quel
conque) forment une base de 4, considéré comme espace vectoriel sur Z,.

Nous pouvons maintenant rappeler le théoréme de A. Borel ([2], Pro-
position 16.1) qui est & la base des résultats de ce paragraphe :

Théoréme 1. Soit E un espace fibré de fibre F et base B connexes par
arcs, vérifiant les hypothéses suivantes :

a) Le terme E, de la suite spectrale de cohomologie de E (& coefficients
dans Z;) est H*(B,Z,) @ H*(F,Z,) (c’est le cas, comme on sail, s
n,(B) = 0 et 8 les groupes d’homologie de B ou de F sont de type fini).

f) HY(E,Z;) = 0 pour tout 1>0.
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y) H*(F,Z,) posséde un systéme simple de générateurs (x,) qui sont
transgressifs.

Alors, st les y, sont des éléments homogénes de H*(B, Z,) qus corres-
pondent aux x; par transgression, H*(B,Z,) est Ualgébre de polyndémes
ayant les y; pour générateurs.

(En d’autres termes, les y, engendrent H*(B,Z,) et ne vérifient
aucune relation non triviale.)

Nous utiliserons ce théoréme principalement dans le cas particulier ot
H*(F,Z,) est elle-méme une algebre de polyndémes ayant pour généra-
teurs des éléments transgressifs z,, de degrés =,. Il est immédiat que
H*(F, Z,) admet alors pour systéme simple de générateurs les puissances
(2r)émes des z, (1=1,...,; r=0,1,...). Sia et r sont deux en-
tiers, désignons par L(a,r) la suite {2"-1a,...,2a,a}; d'aprés 2.4
on a 2 = SqU*(2), les notations étant celles du n° 3. Soient
alors ¢, e HM'(B,Z,) des éléments qui correspondent par trans-
gression aux z, ; puisque les S¢* commutent & la transgression ([8], p. 457),
les éléments z{2" sont transgressifs et leurs images par transgression
sont les Sg“*:"(¢,). Appliquant le Théoréme 1, on obtient donc :

7.3. Sous les hypothéses précédentes, H*(B,Z,) est l'algébre de poly-
noémes ayant pour générateurs les Sq*(@¢) 1 =1,...; r=10,1,...).

8. Détermination de I’algébre H*(Z,; q, Z,)

Ona Hi(Zy;q9,Z,) = 0 pour O0<i<gq, et HY(Z,;q,2Z,) = Z,. Nous
désignerons par u, 'unique générateur de ce dernier groupe.

Théoréme 2. L’algébre H*(Z,; q, Z,) est Palgébre de polyndmes ayant
pour générateurs les éléments Sq'(u,), ou I parcourt U'ensemble des suites
admissibles d’excés <q (au sens du n° 3).

On sait que I’espace projectif réel & une infinité de dimensions est un
espace K(Z,,1); H*(Z,;1,Z,) est donc I'algébre de polyndmes ayant
u, pour unique générateur ; comme d’autre part e(I)<1 entraine que I
soit vide, le théoréme est vérifié pour ¢ = 1.

Supposons-le vérifié pour ¢ — 1 et démontrons-le pour g. Considérons
la fibration 5.1. Par hypothése, H*(Z,;q — 1,Z,) est 1'algébre de
polynémes ayant pour générateurs les éléments z; = Sq¢’(u,_,), ou J
parcourt I’ensemble des suites admissibles d’excés e(J)<g — 1. Nous
noterons 8; le degré de 1’élément z;; ona s, =¢ — 1 + n(J). Il est
clair que u,_; est transgressif et que son image par la transgression
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est u,. D’aprés [8], loc. cit., z; est donc aussi transgressif et z(z;) =
8¢’ (u,). 1l s’ensuit que ’on peut appliquer 7.3 & la fibration 5.1, ce
qui montre que H*(Z,;q,Z,) est I’algébre de polynémes ayant pour
générateurs les éléments Sq¢“*'" o 8¢’ (u,), ol r parcourt ’ensemble des
entiers > 0, et J I’ensemble des suites admissibles. d’excés <q — 1.
La démonstration du Théoréme 2 sera donc achevée si nous prouvons le
Lemme suivant :

Lemme 1. 8¢ ¢ tout entier r > 0, et & toute suite admissible J =
{J1s-- > Juy d'excés <q — 1, on fait correspondre la suite :

IT={2"18,,...,285,85,%1s-->0x} » O®8 83=¢qg—14n(J),

on obtient toutes les suites admissibles d’excés < q ume fois et une seule.

Notons d’abord que s; —2j, = n(J) — 2§,+¢—1 =qg—1—e(J)>0,
donc I est une suite admissible. Si r =0, ona I =J, dou e(l)=
e(J)<q—1; 8i >0, ona e(l)=c¢e(J)+ 8y — 2§, =¢g — 1. Ainsi,
en prenant 7 ==0 on trouve toutes les suites admissibles d’excés
e(I)<<g — 1, et en prenant r>0 on trouve des suites admissibles
d’excés ¢ — 1.

Inversement, si I’on se donne une suite admissible I = {s,,...,1,}
d’excés ¢ — 1, r et J sont déterminés sans ambiguité :

r est le plus grand entier tel que ¢, = 21,,...,¢,_y = 27, ,
= {lpyy,... 0} .
La suite associée au couple (r,J) est bien I car I’on a:
g —1=e(l) =i, — Zipyy + e(J) =i, — 2iryy + 2ipyy — )

dot s, =n(J)+qg—1=3s8;, e ¢,_,=28;,...,1,=21.3,;,
Le Lemme 1 est done démontré.

9. Exemples

H*(Z,;1,Z,) est'algébre de polynémes engendrée par «, .
H*(Z,; 2,7Z,) est'algébre de polynémes engendrée par :
Uy, Sqlu,, Sq¢*8q'u,, ..., Sq2¥8q2*"1. . 8S¢28q'u,, ... .
H*(Z,; 3,Z,) est I’algébre de polyn6mes engendrée par :
ug, Sqtu,, S¢S qPu,, ..., Sq 8¢ 1. .. Squ,,...
Sqlu,, S¢*Sq u,, S¢#S¢*Sq u,, ..., Sq3-2"S¢s2"1. .. S¢38qlu,, ...

Ng-', . . S¢*Sq'u,, ..., Sqizt+02r | Sqt+18q2% 1 | 8¢2Sqlu,,. ..
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10. Détermination de 1’algébre H*(Z; q, Z,)

Le cercle S, est un espace K(Z,1); ceci détermine H*(Z; 1, Z,).
Nous pouvons donc nous borner au cas ob ¢ > 2. Nous désignerons en-
core par %, l'unique générateur de H4(Z ; q, Z,).

Théoréme 3. Si ¢ > 2, Ualgébre H*(Z; q,Z,) est Ualgébre de poly-
némes ayant pour générateurs les éléments Sq'(u,) ou I parcourt Uen-
semble des suites admissibles {i,,...,1,}, dexcés <gq, et telles que
1, >1.

On sait que I’espace projectif complexe & une infinité de dimensions
est un espace K(Z,2); H*(Z;2,Z,) est donc l’algtbre de polynémes
ayant u, pour unique générateur; comme d’autre part e(l)<2 et
t,>1 entrainent que I soit vide, le théoréme est vérifié pour ¢ = 2.

A partir de 14 on raisonne par récurrence sur ¢, exactement comme
dans la démonstration du Théoréme 2. Il faut simplement observer que,
8i ¢ > 3, les suites I dont le dernier terme est > 1 correspondent, par
la correspondance du Lemme 1, aux couples (r,.JJ) ol le dernier terme
de J est >1.

Corollaire. Siv g > 2, lUalgébre H*(Z ; q,Z,) est isomorphe au quo-
tient de Ualgébre H*(Z,; q,Z,) par I'idéal engendré par les Sq(u,) ou I
est admissible, d’excés <q, et de dernier élément égal & 1.

De fagon plus précise, ’homomorphisme canonique Z — Z, définit
(grice & 5.4) un homomorphisme de H*(Z,;q,Z,) dans H*(Z;q, Z,),
et les théorémes 2 et 3 montrent que cet homomorphisme applique la
premiére algébre sur la seconde, le noyau étant 'idéal défini dans 1’énoncé
du corollaire.

11. Détermination de 1’algdbre H*(Z, ; q,Z,) lorsque m = 2*, h > 2

L’algébre H*(Z,,;1,Z,) n’est pas autre chose que l'algébre de coho-
mologie modulo 2 du groupe Z,,, au sens de Hopf. Sa structure est bien
connue (on peut la déterminer soit algébriquement, soit en utilisant les
espaces lenticulaires) :

C’est le produit tensoriel d’une algébre extérieure de générateur u, et
d’une algébre de polynémes de générateur un élément v, de degré 2.
L’élément v, peut &tre défini ainsi :

Soit &, 'opérateur cobord attaché & la suite exacte de coefficients
0 >2Zy - Zyns1 > Zpp —0. Soit u, le générateur canonique de
HY(Z,;1,%Z,); onaalors v. = §,(u;).
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Si & était égal & 1, on aurait &, = Sq¢', d’aprés 2.6; mais comme
nous avons supposé k > 2, §, différe de Sq¢* (on a d’ailleurs Sq¢t(u,) =
u2 = 0), Nous écrirons: v, = Sq}(%,), lorsque cette écriture ne pourra
pas préter & confusion.

Le raisonnement de [8], p. 457, montrant que les Sq¢* commutent 3 la
transgression, se laisse adapter sans difficulté & I’opération &, et montre
ainsi que v, est un élément transgressif de H%*(Z,; 1, Z,) dans la fibra-
tion qui a K(Z,, 1) pour fibre et K(Z,, 2) pour base. Comme
H*(Z,;1,Z,)) a pour systéme simple de générateurs le systéme :

uy, v, = Sqi(w,), 8¢S ¢4 (wy), . .., Sg?*. .. 8?8qh(wy) ... ,

le théoréme 1 montre que H*(Z,;2,Z,) est l'algébre de polyn6émes
ayant pour générateurs les éléments :

Uy, 8q3 (%), ..., Sq2* ... 8¢ 8q}(wy), ... .

Ceci nous conduit & la notation suivante: si I = {i;,...,%} est une
suite admissible, on définit Sgqj(u,) comme étant égal & Sq’(u,) si
i,>1, et & Sqg"...8¢" 8q}(u,) si i, =1 (S¢}(u,) a le méme sens
que plus haut, autrement dit Sq}(u,) = &, (u;), u, désignant le généra-
teur canonique de HY(Z,;q, Z,)).

La détermination de H*(Z,; q,Z,) se poursuit alors par récurrence
sur ¢, exactement comme celle de H*(Z,;q,Z,), & cela prés que les
S¢! remplacent les Sq’. On obtient finalement :

Théoréme 4. Si q > 2, lalgébre H*(Z,;q,Z,), o m =2 avec
h > 2, est Ualgébre de polynomes ayant pour générateurs les éléments
Sqi(u,) od I parcourt V'ensemble des suites admissibles d’excés <gq.

Comme les 8¢} correspondent biunivoquement aux S¢’, on a:

Corollaire. H*(Z,;q.Z,) et H*(Z,;q,Z,) sont isomorphes en tant
qu’espaces vectoriels sur le corps Z,.
Le résultat précédent est valable méme si ¢ = 1.

12. Détermination de 1’algébre H*(II; q,Z,) lorsque /I est un groupe
abélien de type fini

Le résultat suivant peut étre considéré comme classique :

Théoréme b. Soient IT et IT' deux groupes abéliens, IT éant de type fini,
el aoit k un corps commutatif. L'algébre H*(II + IT' ; q, k) est isomorphe
awu produst tensoriel sur k des algébres H*(IT;q,k) et H*(II' ;q,k).
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Rappelons la démonstration : Soient X un espace K(/7,q) et X’ un
espace K(II',g). L'espace X XX’ est unespace K(II 4 II',q), comme
nous I’avons déja signalé (5.2). Puisque IT est de type fini, les groupes
d’homologie de X sont de type fini en toute dimension d’aprés [8], p. 500
(voir aussi [11], Chapitre II, Proposition 8). Appliquant alors un cas
particulier de la formule de Kiinneth*), on a:

H*(X xX' k) = H*(X, k) @ H*(X', k) ,

ce qui démontre le Théoréme 5.

Comme tout groupe abélien de type fini est somme directe de groupes
isomorphes & Z et de groupes cycliques d’ordre une puissance d’un
nombre premier, le Théoréme 5 rameéne le calculde H*(11 ; q, Z,) aux trois
cas particuliers: Il =2, II=2Zpn, II =12, avec p premier # 2.
Les deux premiers cas ont été traités dans les n°® précédents et 1’on sait
par ailleurs (cf. [8] et [11], loc. cit.) que H"(Z,;q,Z,) = 0 pour n>>0,
si m est un entier impair ; le troisiéme cas conduit donc & une algébre de
cohomologie triviale, et la détermination de H*(Il;q,Z,) est ainsi
achevée, pour tout groupe I de type fini.

13. Relations entre les diverses algébres H*(II; ¢, Z,)

Dans ce qui précéde nous avons traité indépendamment les cas IT = Z,
I1=2,, II=2,,. 11y a cependant des relations entre ces trois cas,
qui proviennent des fibrations du. n°® 6. Nous allons en donner un exemple :

Posons m = 2", avec b > 1. Considérons la suite exacte

0>Z—>Z—->2,—>0,

ol le premier homomorphisme est la multiplication par m. En appli-
quant 6.3 on en déduit ’existence d’une fibration o I’espace fibré est
un espace K(Z,,q — 1), ou la fibre est un espace K(Z,q — 1) et la
base un espace K(Z,q). Soit %,_,; 'unique générateur du groupe
H*Y(Z ; q,Z,); I'image de u,_, par la transgression 7 est nulle, car sinon
HY(Z_.;q — 1,2, serait nul, ce qui n’est pas; puisque les S¢’ com-
mutent & la transgression, on a v(Sq'u,_,) = 0 pour toute suite I, et
comme H*(Z;q — 1,Z,) est engendré par les Sq'u,_,, il s’ensuit que
toutes les différentielles d, (r > 2) de la suite spectrale de cohomologie
modulo 2 de la fibration précédente sont identiquement nulles. Le terme
E_, de cette suite spectrale est donc isomorphe au terme E;, ce qui donne :

4) Ce cas particulier est démontré dans [8], p. 473.
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13.1. L’algébre graduée associce @ H*(Z,;q — 1,Z,), convenable-
ment filtrée, est isomorphe & H*(Z;q9,2Z,) @ H*(Z;q — 1, Z,).

En particulier :

13.2. H*(Z,;9—1,2,) e¢¢ H*(Z;q,2,) Q H*(Z;q — 1,Z,) sont
isomorphes en tant qu’espaces vectoriels sur le corps Z,.

On notera que 13.2 fournit une nouvelle démonstration du Corollaire
au Théoréme 4. D’un autre coté, il serait facile de tirer 13.2 des Théo-
rémes 2, 3, 4.

14. Les groupes stables; cas de la cohomelogie

IT et @ étant deux groupes abéliens, nous poserons®):
14.1. A,(I1,G)=H, (IT;q,Q), avec g>n.

On sait (cf. [5] ainsi que [8], p. 500) que ces groupes ne dépendent pas
de la valeur de g choisie, mais seulement de /T, G et n . Ce sont les «groupes
stables».

Le raisonnement du Théoréme 5 montre immédiatement que I'on a la
formule suivante (voir aussi [5]):

14.2. A (IT+I',G)= A,(I1,G) + A,(Il',@) pour tout n > 0.

On définit de fagon analogue les groupes A"(I1, @) = H"+¢(Il; q, G),
avec ¢>n. Les Théorémes 2, 3, 4 permettent de déterminer ces groupes
lorsque G = Z,, et lorsque I1 =27, Z,, ou Z, avec m = 2k:

Théoréme 6. L’espace vectoriel A™(Z,,Z,) (resp. A™(Z,,Z,), avec
m = 2*) admet pour base 'ensemble des éléments Sq'(u) (resp. Sql(u)),
ou I parcourt U'ensemble des surtes admissibles de degré n.

(Nous avons noté « I'unique générateur de A4°(Z,,, Z,)).

Par exemple, A1°(Z,,Z,) admet pour base les six éléments :

Sq%u, S¢*Sq'u, S¢#ESq*u, Sq¢'Sq¢*u, 8¢ 8¢*S¢*u, S¢#S¢@Sq'u .

Théoréme 7. L’espace vectoriel A™(Z,Z,) admet pour base I'ensemble
des éléments Sq'u, ou I parcourt Uensemble des suites admissibles dont le
dernier terme est > 1 et dont le degré est n.

Par exemple, A'%(Z,Z,) admet pour base les trois éléments : S¢'%u,
S¢Sq*u, S¢'Squ.

%) La notation adoptée ici différe d'une unité de celle de [5).
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15. Les groupes stables; cas de ’homologie

Pour passer des groupes de cohomologie modulo 2 aux groupes d’homo-
logie nous aurons besoin du Lemme suivant :

Lemme 2. Soient X un espace, n un entier > 0. Supposons que
H,. (X, Z) ait un nombre fini de générateurs, et que la suite :

Sq* Sq*
H\(X,Z,) > H*(X, Z,) > H*(X, Z,)

soit exacte. Posons N = dim. [H*(X, Z,)|Sq'(H" (X, Z,))).

Le groupe H,(X,Z) est alors somme directe d’un groupe fini d'ordre
tmpair et de N groupes isomorphes & Z,.

Pour simplifier les notations, nous poserons L, == H,(X,Z). D’aprés
la formule des coefficients universels®), on a, pour tout groupe abélien G,
une suite exacte :

0->Ext(L,,,G)—~>H"(X,d) >Hom (L,,G) -0 .
En appliquant ceci & G =Z, et & G = Z;, on obtient le diagramme :

0 > Ext (L, ,,Z,) >H(X,Z,) >Hom (L,,Z,) - 0

2 ¥ 1t v
0 - Ext(L,_,,Z,) > H"(X,2,) >Hom (L,,Z,) - 0 .

D’aprés la suite exacte 2.7, le noyau Q" de
Sq¢: Hv(X,Z,) > H"\ (X, Z,)

est égal 4 'image de y. Comme 'application ¢ est sur (d’aprés une pro-
priété générale du foncteur Ext), il s’ensuit que Q" contient Ext(L,_,,Z,).
Soit d’autre part R® I'image de S¢*: H" (X, Z,) > H~X,Z,). On
voit facilement (par calcul direct, par exemple) que toute classe de coho-
mologie fe R* donne 0 dans Hom(L,, Z,). Donc R" est contenu dans
Ext (L,_,, Z,). )
Vu I’hypothése faite dans le Lemme, on a donc:

Qn = R* = Ext (L,,_p Zz) .

Ainsi 'image de y est égale & Ext(L,_,,Z,). Il s’ensuit que I’homo-
morphisme y est nul; compte tenu de la structure des groupes abéliens
4 un nombre fini de générateurs, ceci montre que L, est somme directe
d’un groupe fini d’ordre impair et d’un certain nombre de groupes Z,.

8) Voir par exemple S. Eilenberg and N. E. Steenrod, Foundations of Algebraic
Topology, 1., Princeton 1952, p. 161.
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Il est clair que le nombre de ces derniers est égal & la dimension de
Hom (L,, Z,) c’est-a-dire & N .

Théoréme 8. Le groupe A,(Z,,Z) est somme drirecte de groupes Z, en
nombre égal au nombre des suites admissibles I = {i,,...,%,}, ou i, est
patretod n(I)=1,+---4 1, estégal a n.

Nous allons déterminer 1’'opération Sq! dans 4*(Z,, Z,), de fagon &
pouvoir appliquer le Lemme 2.

Rappelons que I'on a Sq¢'S¢* = Sq*+! si n est pair, et S¢*Sq”» =0
si n est impair. On tire de 1a :
si ¢, est impair

i i 0
Sq*(Sq*...8¢%u) = Sqi+1. .. Sq'tu  sii, est pair .

Soit alors B" (resp. C") le sous-espace vectoriel de 4A"(Z,, Z,) engendré
par les S¢’(u) o s, est pair (resp. impair). A"(Z,, Z,) est somme directe
de B" et de C"; d’aprés la formule écrite plus haut, S¢! est nul sur C» et
applique isomorphiquement B* sur C**!. La suite :

S¢* Sq*
ArY(Z,, Z,) > A™(Z,, Z,) > AN (Z,, Z,)

est donc exacte, et B* est isomorphe & A"(Z,, Z,)/S¢*4"(Z,, Z,).
Le théoréme résulte alors du Lemme 2, et du fait (démontré dans [8],
p- 500), que A4,(Z,, Z) est un groupe fini d’ordre une puissance de 2.
On démontre de méme ; '

Théoréme 9. Le groupe A,(Z,,Z), n>0, est isomorphe ¢ A, (Z,,Z)
lorsque m est une puissance de 2.

Théoréme 10, Le groupe A, (Z,Z), n>0, est un groupe fini dont le
2-composant est somme directe de groupes Z, en nombre égal au nombre des
suttes admissibles I = {i,,...,4,}, ou ¢, est pair, i,>1, et ou n(l) =
8y +---+ 1, estégala n.

Remarque. En comparant les Théorémes 7 et 8, on peut montrer que
A, (Z,,Z) estisomorphe & A,(Z,Z,). De facon générale, on conjecture
que A4,(II,G) est isomorphe & A, (G, II) quels que soient les groupes
abéliens @ et II; il suffirait d’ailleurs de démontrer le cas particulier
IT = Z pour avoir le cas général (compte tenu des résultats annoncés
par Eilenberg-MacLane dans [5], I, ceci vérifie la conjecture en question
pour n =0,1,2,3).

Théoréme 11.  Pour tout groupe abélien I1, le groupe A,(II,Z), n>0,
eal un groupe de torsion dont le 2-composant est somme directe de groupes
saomorphea & 7, .
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Soient 7, les sous-groupes de type fini de I7; puisque II est limite in-
ductive des I, le complexe K (II, q) est limite inductive des complexes
K(II,,q), et on en conclut que A,(/1,Z) est limite inductive des
A,(Il,,Z) ce qui réduit la question au cas ol /7 est de type fini.

En utilisant la formule 14.2, on est alors ramené au cas des groupes
cycliques, qui est traité dans les Théorémes 8, 9, 10.

Remarque. Le fait que A,(J1,Z) soit un groupe de torsion résulte
aussi de [8], p. 500—501.
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§ 4. Opérations cohomologiques
26. Définition des epérations cohomologiques

Soient ¢ et » deux entiers >0, 4 et B deux groupes abéliens. Une
opération cohomologique, relative & {g,n, d, B}, est une application:

C:HvyX,A) > H"X, B) ,

définie pour tout complexe simplicial X, et vérifiant la condition sui-
vante :

26.1. Pour toute application continue f d'un complexe X dans un
complexe Y,ona Cof* = f*o(.

Remarque. Nous nous sommes placés dans la catégorie des complexes
simpliciaux pour des raisons de commodité. On pourrait aussi bien se
placer dans la catégorie de tous les espaces topologiques (la cohomologie
étant la cohomologie singuliére). Cela ne changerait rien, puisque I'on
peut remplacer tout espace topologique par le complexe simplicial «réali-
sation géométrique» de son complexe singulier, et que cette opération ne
modifie pas les groupes de cohomologie.

2%. Exemples

27.1. Supposons que n = ¢, et donnons-nous un homomorphisme
de A dans B. Cela définit un homomorphisme de H?(X, A) dans
He(X, B) qui vérifie 26.1.

27.2. Supposons que n = ¢ + 1, et donnons-nous une suite exacte :

0—+B—>L—>4->50,

Cette suite définit une opération cobord: He(X, A) - He+'(X, B) qui
vérifie 26.1.

27.3. Supposons que n = 2¢, et donnons-nous une application bili-
néaire de 4 dans B. Au moyen de cette application, on peut définir le
cup-carré d’un élément de H?(X, A), qui est un élément de H*¢(X, B),
et cette opération vérifie 26.1.

27.4. Les 8¢, les 8¢’, les puissances réduites de Steenrod (voir [13]),
sont des opérations cohomologiques.

28. Caractérisation des opérations cohomelogiques

Théordme 1.  Les opérations cohomologiques relatives ¢ {q,n, A, B}
correapondent biunivoquement aux éléments du groupe H"(A ; q, B).
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Soit 7' un complexe simplicial qui soit un espace K(4, q). Comme nous
Yavons vu au n® 3, H¢(T, A) posséde une classe fondamentale v qui
correspond dans Hom (4, 4) & l'application identique de 4 sur 4. Si
C est une opération cohomologique relative & {g,n, 4, B}, C(u) est
un élément bien défini de H™(T, B) = H"(A4 ; q, B), élément que nous
noterons ¢ (C).

Inversement, soit ¢ un élément de H™(T, B), et soit x e H1(X,A4) une
classe de cohomologie d’'un complexe simplicial arbitraire X . D’aprés 5.3,
il existe une application g, : X - T telle que g)(u) = z, et cette ap-
plication g, est unique, & une homotopie prés. L’élément ¢ (c) e H*(X , B)
est donc défini sans ambiguité, et il est immédiat que I’application
x — gX¥(c) vérifie 26.1. C’est donc une opération cohomologique relative
a {¢,n,d, B}, que nous noterons y(c).

On a goy=1. Soit en effet ceH"(4;q,B). Par définition,
@oy(c) est égal & gX(c), ot g,:T — T est une application telle que
g4 (w) = w. On peut donc prendre pour g, 'application identique, ce qui
donne goy(c) = gr(c) =c.

11 nous reste & montrer que yo@ = 1. Pour cela, soit C une opéra-
tion cohomologique, et posons ¢ = ¢(C) = C(u). Pour tout élément
zeHUX, ), on a y(o)(z)=g;(c) =g, (Cw) = C(g;(w)) = C(x).
Ceci signifie bien que y(c) = yo ¢(C) est identique & C'.

Corollaire. Soient C, et C, deux opérations cohomologiques relatives au
méme systéme {q,n, A, B}, et soit ula classe fondamentale de H1(A ;q,4).
St C,(u) = Cy(u), alors C, = C,.

Remargques. 1) On aurait aussi bien pu définir les opérations cohomolo-
giques pour la cohomologie relative (des complexes simpliciaux, ou bien
de tous les espaces topologiques, ce qui revient au méme). La démonstra-
tion précédente reste valable.

2) On pourrait également définir les opérations cohomologiques
C(z,,...,z,) de plusieurs variables z;e H'(X, 4,), a valeurs dans
Hn(X, B). Ces opérations correspondent biunivoquement aux éléments
de H"(K(A4,,q,)x--- XxK{4,,q,), B), comme on le voit par le méme
raisonnement que plus haut. Lorsque les A4, sont de type fini et que B est
un corps, il résulte de la formule de Kiinneth que ces opérations se ré-
duisent & des cup-produits d’opérations cohomologiques 4 une seule
variable.
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29. Premiéres applications

Nous allons appliquer le Théoréme 1 & divers cas simples. Nous désigne-
rons par (' une opération cohomologique relative & {g,n, 4, B}.

29.1. 8i O0<n<gq, C est identiquement nulle. En effet, H*(A4 ; q, B)
est alors réduit 4 0.

29.2. 81 n=gq, C est associ¢ @ un homomorphisme de A dans B (au
sens de 27.1). En effet, H2(4 ;q, B) = Hom (4, B).

20.3. St g=1, A=2Z, n>1, C est identiquement nulle. En effet
H"(Z;1,B)= 0 si n>1, puisq’un cercle est un espace K(Z, 1).

20.4. St ¢g=2, A=2Z, n impair, C est identiquement nulle. St n
est pair, et st B=2 ouZ,,ona C(x)=k-27t, ke B. En effet, on
peut prendre pour espace K(Z,2) un espace projectif complexe & une
infinité de dimensions.

29.5. Si qest impair, A =27, B =Q (corps des rationnels), n>gq,
C est identiquement nulle. En effet, on a H*"(Z;¢,Q)=0 si n>gq,
d’apres [8], p. 501.

20.6. Stqestpair, 4 =2, B=2Q, et sin n’est pas divisible par q,
C est identiquement nulle ; st n est divisible par q, on a C(z) = k-2™4,
k €Q. En effet, d’aprés [8], loc. cit., H*(Z ; ¢, Q) est I’algébre de poly-
némes sur @ qui admet « pour unique générateur.

On peut donner bien d’autres applications du Théoréme 1. Par exemple
lorsque B est un corps, établir une formule de produit ;

Clz-y) = 20:(2)-Cy(y) ;

lorsque 7 < 2q, montrer que C est un homomorphisme. Etc.

30. Caractérisation des i-carrés

Soit ¢ un entier > 0, et supposons donné, pour tout couple (X,Y)
de complexes simpliciaux, et tout entier » > 0, des applications

At HUX Y Z,) > H+(X,Y ; Zy)

vérifiant les propriétés 2.1, 2.2 et 2.4, c’est-a-dire telles que A?o f* =
f¥oAi, Ao § = o0 At Ai(x) = 2? sidim. z = 1, A*(x) = Osidim. z <1.
Nous allons montrer que les A% coincide avec les S¢* #).
D’aprés le Théoréme 1 (qui est valable dans le cas de la cohomologie
relative, comme nous I'avons remarqué), il suffit de prouver que A*(u,)
- 8q*(u,), u, désignant le générateur de H9(Z,; q, Z,). Ceci est clair si

1) R, 'Thom a obtenu antérieurement. une caractérisation analogue.
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g <t¢, a cause de 2.4; pour ¢>>1, raisonnons par récurrence sur q.
D’aprés le raisonnement de [8], p. 457 (qui n’utilise que les propriétés
2.1 et 2.2), A* commute & la transgression v. On a donc

A"(uq) = A (v u,_,) = r(diu,_,) = 1(S¢u, ;) = Sqiu, ,
c.q.f.d

Note. Comme nous I'avons indiqué au n° 26, on peut étendre les A% &
tous les couples (X,Y) d’espaces topologiques, & condition d’utiliser la
ocohomologie singuliére, et les propriétés 2.1, 2.2, 2.4 sont encore véri-
fiées. C’est ce qui nous a permis d’utiliser les A* dans la cohomologie de
l'espace fibré 5.1, qui relie K(Z,,gq — 1) & K(Z,, q), espace fibré qui
n’est pas un complexe simplicial.

On pourrait d’ailleurs remplacer, dans la démonstration précédente,
le complexe K(Z,, q) par le joint de K(Z,, g — 1) avec deux points, et
I'on pourrait ainsi demeurer entiérement & I'intérieur de la catégorie des
complexes simpliciaux.

81. Opérations cohomologiques en caractéristique 2

Posons 4 = B=1Z,. En combinant le Théoreme 1 avec le Théo-
réme 2 du § 2, on obtient :

Théoréme 2. Toute opération cohomologique C: HYX,Z,) - H*X,Z,)
est de la forme :
C(z) = P(Sq" (z),..., 8q'¥(z)) ,

o P désigne un polynéme (par rapport au cup-produit), et ow Sq™, .. .,Sq'*
désignent les t-carrés itérés correspondant cux suites admissibles d’excés
<q. En outre, deuzx polyndmes distincts P et P’ définissent des opérations
C et OV distinctes.

Lorsque 4 = Z, (m = 2*), on a un résultat analogue en remplagant
les Sq' par les Sqi; lorsque 4 =Z, on ne doit considérer que des
suites I dont le dernier terme est >1.

Corollaire. Si n < 2q, les i-carrés itérés Sq', ou I parcourt Uensemble
des suites admissibles de degré n — q, forment une base de U'espace vecto-
riel des opérations cohomologiques relatives & {q,n,Z,,Z,} .

82. Relations entre i-carrés itérés

Le Corollaire précédent montre que tout i-carré itéré est combinaison
linéaire de S¢’, ol I est admissible. Il est naturel de chercher une mé-
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thode permettant d’écrire explicitement une telle décomposition. Cette
question a été résolue par J. Adem [1], qui a démontré la formule sui-
vante (conjecturée par Wu-Wen-Tsiin) :

Si a<2b, 8¢°8¢® = Fococap(i2% ) S¢°H 8¢, (32.1)

oir (¥) désigne le coefficient binémial % !/j!(k — j)!, avec la conven-
tion usuelle: (¥) =0 si j>k.

On voit facilement que cette formule permet de ramener, par des ré-
ductions successives, tout :-carré itéré & une somme de Sqf ol I est ad-
missible. Elle répond donc bien & la question posée.

Citons quelques cas particuliers de 32.1 dont nous ferons usage au § 5:

32.2. Sq'S¢r =0 st n est impair, Sq'Sq" = Sqg*+ st n est pair.

32.3. S8¢28q¢*=8¢8¢*; 8¢*8S¢®* = S¢° + Sq¢*Sqt.

33. Méthode permettant d’obtenir les relations entre i-carrés itérés

La démonstration donnée par J. Adem de la formule 32.1 est basée
sur une étude directe des i-carrés itérés. Nous allons esquisser une mé-
thode plus indirecte, mais qui conduit plus aisément au résultat?®).

Soit X I’espace projectif réel & une infinité de dimensions, ¥ = X2 le
produit direct de g espaces homéomorphes & X . L’algébre de cohomologie
H*(Y, Z,) est donc l'algébre de polynémes & ¢ générateurs z,,..., z,,
de degrés 1. Nous noterons W_le produit z,...z, de ces générateurs:
ona W, ,eHYY,Z,).

Lemme 1. Soit C une somme de i-carrés itérés, tous de degrés < q.
St C(W,) = 0, alors C est identiquement nulle.

Compte tenu du Corollaire au Théoréme 2, il suffit de vérifier que les
Sq¢'(W,) sont linéairement indépendants lorsque I parcourt I’ensemble
des suites admissibles de degré < g. Or, il est trés facile de déterminer
explicitement les opérations S¢* dans H*(Y, Z,), en utilisant les pro-
priétés 2.3, 2.4, 2.5; le résultat cherché s’ensuit par un calcul que nous
ne ferons pas ici (voir un article en préparation de R. Thom).

Théordme 3. Soit C une somme de i-carrés itérés. Supposons que, pour
tout espace T, la relation C(y) = 0, y e H*(T, Z,), entraine C(x-y) = 0
pour tout z € H (T, Z,). Alors C est identiquement nulle.

Prenons pour 7' D'espace Y défini plus haut (¢ étant égal au degré
maximum des i-carrés itérés qui figurent dans C). On a évidemment

1) Cotte méthode ost d'ailleurs trés proche de celle qui avait amené Wu-Wen-Taiin &
sonjeoturer la formule 321,
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0(1) =0, d’ot C(z,...x,) =0 par récurrence sur :, et en particulier
C(W,) =0, dot C =0 daprés le Lemme 1.

A titre d’exemple, vérifions 'hypothése du Théoréme 3 pour C =
8¢*8Sq® + S¢*Sq'. En utilisant 2.3, 2.4, 2.5, on obtient :

8¢*8q*(z-y) = 2*-8q'y + 22-(S¢*Sq'y + Sq¢*'S¢ty) + =-8¢*S¢?y ,
8¢*8¢'(z-y) = 2*-Sq'y + 2*-(S¢®y + S¢*S¢'y) + =-8¢*Sq'y .

Comme S¢® = 8¢'S¢?, on tire de 1a:

C(z-y)==-Cly) ,

oe qui montre bien que C(y) =0 entraine C(z-y)= 0. D’aprés le
Théoréme 3, on a donc S¢*Sq® + S¢38¢* = 0, d’ou S¢*8¢* = S¢*S¢,
et nous avons démontré la premiére des relations 32.3.

On démontrerait de la méme facon la formule 32.1 dans le cas général,
en raisonnant par récurrence sur @ + b. Nous laissons le détail du cal-
cul au lecteur.
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The next extract is taken from my own lecture notes. All
the material in it is in the literature, but it is scattered around
several original papers by Blakers, Massey and Moore. The main
prerequisites for reading it are a knowledge of elementary homotopy
theory and of homology theory up to spectral sequences, plus
Serre's theory of classes of abelian groups (see §§1, 4, 5, 8, 10
of the introduction).
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ON THE TRIAD CONNECTIVITY THEOREM
J. F. Adams

(from unpublished lecture notes)

I have mentioned the theorem of J. H. C. Whitehead: if the
spaces X and Y are l-connected, and f :H_(X) = H_(Y) is iso,
then f :7 (X) = 7, (Y) is iso. Why shouldn't we have a relative
Whitehead theorem? It should say that if f :H,(X, X') ~ H, (Y, Y')
is iso, then f_:7m (X, X') = 7, (Y, Y') is iso. Unfortunately, this
theorem is not true. For a counterexample, let Eri, E? be the

"1 Take X, X' = E,, S
and Y, Y'=S", E"; andlet f be the injection map. Then
f,:H(X, X') = H(Y, Y') isiso. But

two hemispheres of S", meeting in § n-1

(13 =

n &, X) = 76"

Rt

\ n
nr(Y, Y'") 1rr(S ) .

For each n = 2, these are not isomorphic for all r. For,
one of n-1, n is even and one is odd; hence one of n*(sn-l),
ﬂ*(Sn) contains an infinite group above the Hurewicz dimension and
the other doesn't.

We can, however, have a limited result in the direction of a
relative Whitehead theorem. To proceed, we have to introduce new
groups, measuring the obstruction to the truth of the theorem.
Firat, {f we have amap {:X, X' = Y, Y', then (by using the
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mapping-cylinder) we may suppose without loss of generality that
X, X'CY, Y and XNnY' =X'. We will now rename the spaces,
and take a space X with subspaces A, B and ANB=C. We
are interested in the injection A, C - X, B (or, similarly,
B, C~ X, A).

We assume that the base-point X in X is taken in C.
Let L(X, B) be the space of functions w:[0, 1] =~ X such that
w(0) = X w(l) € B; that is, L(X, B) is the space of paths in X
starting at the base-point and ending in B. Define L(A, C)
similarly. Then we have L(A, C) C L(X, B), and the following

diagram is commutative.

m (&, C) = 1 (LA, C)
i* i*
X, B) = 71 (LK, B)

Factor L(A, C) - L(X, B) through an equivalence and a fibering;
the fibre F is givenby F = L(L(X, B), L(A, C)). To within a
homeomorphism F is the space of functions f :1> = X such that

=X, if t=0

€A if t=1
:XO if u=0
€B if u=1

f(t, u)

We may show where the various parts of the square map as follows
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B C
ulx X A
0
)
_.>t

We have the following exact sequence.

- -’nn_l(F)-’un_l(L(A, c) ->1rn_1(L(X, B)) -’nn_z(F) -...

We define the triad homotopy groups by un(X; A, B)= un_z(F).
(We use the subscript n because un(X; A, B) evidently admits an
interpretation in terms of maps of the n-cube 1" into X.) We thus

obtain the following exact sequence.

d ix
-1 (XA, B) =7 (A, C) =7 (X, B)=7 (X; A, B) ...

When the triad groups nn+1(X; A, B) and nn(X; A, B) are zero,
the map i, is iso.

There is a natural isomorphism between nn(X; A, B) and
un(X; B, A) given, in terms of maps of In, by

f(xl, X, X

-,xn)‘-‘-f(xz,x y Xy vuny, X))

3’ 7 1’ 73 n

Thus we have another exact sequence, as follows.

Ly

d
=1 (GA, B =1 (B,C) = 7 (X,A)=1 (XA, B)~...

The following diagram is anticommutative.
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7 1% A, B) ™ (4, C)
d d
d
7 (B, C) 7 1)

Otherwise the naturality is as expected.
We say that a triad is excisive if

i,:H, (A, C) = H_(X, B)

i,:H,(B, C) = H_(X, A)

are iso. Let & be a class of abelian groups, satisfying the axioms
needed for Serre's relative Hurewicz isomorphism theorem mod %
(Spanier p. 511).

Theorem (Blakers-Massey Triad Theorem Mod & ).
Suppose that (X; A, B) is an excisive triad, X is 1-connected,
(X, A), (X, B) and (X, C) are all 2-connected, and (X, A), (X, B)
are (q - 1), (p - 1)-connected mod &~ . Then (X; A, B) is
(p + q - 2)-connected mod & and the generalised Whitehe;d product
np(A, C)® nq(B, C) - np+q_1(x; A, B) is an isomorphism mod ¢&°.

Before beginning the proof, I must explain about Whitehead
products. Recall (e. g. from Hilton (1) p. 42) that we have

sP x g% sPv s,

m (s v s%) = nr(sp) on (sh e Mol

Here the first two summands are embedded by the injections ip,
i, of sP, s? in sP v s% and the third summand is embedded
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by d. By the relative Hurewicz theorem, the first non-zero group
S0 x 8%, P v s is wy, (P x5, sP v sh) 2z, Take the
two generators in H_(sP ), H (S‘l), their product gives a generator
in H Sp X Sq), let the correspondmg generator of

m +q(Sp>< Sq, sP v Sq) be g. Then in 1rp+q_1(sp Sq) we have the
element dg.

Proposition. To o € np(X) and B € nq(X) we can assign
a unique element [a, B] € 1rp +q_1(X) (called the Whitehead product
of a and B) to satisfy the following conditions.

(i) The Whitehead product is natural; that is,
f*[(!, B] = [f*(!, f*B] .

(ii) In sP v s% we have

Proof. Suppose that o € np(x) and B € nq(X) are

represented by maps f:Sp - X, g:Sq ~ X. Then we can construct
amap h:sP v §% =X such that hiy = f, hij =g. Then

e, 8] = [h, i, by i]]
=h, dg.

This proves the uniqueness of [a, 8]
Conversely, we can define [a, 8] by [e, 8] = h dg, where

h is as above; this satisfies (i) and (ii) and proves the existence
of the Whitehead product. Another way to express this proof is to
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say that we first define [ip, iq] = dg and then define [a, ] for
general o and B by naturality.

In this proof, the space sP v st is called a universal
example (or representing object).

The Whitehead product is bilinear and anticommutative;
this can be proved by diagram-chasing with the universal example.

One can give similar treatments of the relative and general-
ised Whitehead products. These are pairings

® XA e 1@ - X A

(ii) np(B) ® nq(X, B) ~ (X, B)

"p+q-1

(iti) np(A, C) ® nq(B, C)~ 1

g1 A, B

The universal examples are as follows:
M X =ePvsl a=gPlogl
) X =sPvE® B=gPvsll!

i) X =ePvEY A =—gPv st

B=sPlvEl c=gflvgtl,

To define specific elements in their homotopy groups, we employ
the following diagrams.

(i) 0=m (X', A =7 (A" < X"

' [ " = '
(i) O*nr(x, B)-’nr_l(B) < nr_l(X)
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(ii) 0 0

L

0 = T (XA, B) = (A, C) R oA (X, BY)

r-l(

' ' ' - '
0o -~ nr_l(B , CY) = nr_z(C) - nr_z(B)

]

m (X, A) T (A

Here, for example, the map nr_l(X') - nr_l(A') in case (i) is
induced by the map X' — A' which maps EP to the base-point and
keeps S? fixed,

We use these diagrams to deduce the existence in nr(X', A'
nr(X', B') and nr(X';A', B') of elements [ip, iq] which map as
follows.

O Ty ) G

p-1’ iq] =0

@ iy 1] = ¢ 1)p[1 ig) = 0

(i) i) = VP, i ] = o

lip:

li_15 1)
|
0

From these elements we define [a, B] for general a and 8 by
naturality, as before.
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We further deduce from diagram (iii) that the first non-zero
group nr(X'; A', B') is Z for r=p + q - 1, and that the element
[ip, iq] is a generator.

The relative and generalised Whitehead products are bilinear
and anticommutative; this is deduced by diagram-chasing from the
bilinearity and anticommutativity of the Whitehead product.

Proof of the Theorem. Step 1. By a functor, we may
replace (X; A, B) by (Xl; A1’ Bl) so that X1 is contractible,
(Xl, A1’ Bl) is excisive and we do not change the relative or
triad homotopy groups.

In fact, we may take X = L(X, X), A1 = L(X, A),

B1 = L(X, B), C1 = L(X, C). We have C1 = A1 n Bl. We have
the following diagram.

A, C(—=X, B,

| |

A, C X, B

All the vertical arrows are fiberings with the same fibre F = (X)
and trivial operations of LS (X) on H_(F). We are given that

H, (A, C) - H_(X, B) is iso; by an obvious spectral-sequence
argument, H*(Al, Cl) - H*(Xl, Bl) is iso. Similarly for
H*(B1’ C1) - H*(Xl, Al).

Step 2. We will define a homeomorphism from the function

space L(X; A, B) = L(L(X, B), L(A, C)) to another. This is done
by dividing the square 1° into two triangles along the line t = u.
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B C
u x A
1o
X
0
—_t

The two triangles are homeomorphic to two squares, and we have

to consider pairs of maps which map the edges of the two squares

as follows.
X C X C
tf x0 X A X0 X B
X X
0 0
—_—t

However, the maps must also agree along the top edges u=1 of
the two squares. Thus we have

L(X; A, B)=L(X X X, A X B, D)

where D is the diagonalin X X X, Set

= X = = .
X2 xl xl’ Az Alel’ Bz l)1’

then A2 meets B2 in a homeomorph of C1’ We have
nr(Xl; A1’ Bl) = nr(Xz; Az’ Bz) .
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Also since X1 is contractible we have w*(xl) =0, 11*(X2, Bz) =0

and

Ry a

"r+1(x2;Az’ Bz) ”r(Az’ Cz)

d
Ty &) = T(A)

Q.

ur+1(X2, Bz) ; ”r(Bz) .

Step 3. Since X1 is contractible, the Mayer-Vietoris

sequence gives us

IR

H(C) = H.(A)®H(B,),
where the map is induced by the two injections. Thus we obtain
the following diagram.

i i
Hr(cz) - Hr(Al x B1) - Hr(A1 X B1’ Cz)

A

IR

H(A)® H (B))

(Here X is induced by the two projections.) Thus j gives an iso-
morphism from Ker A to Hr(Az’ Cz)’ Therefore Hr(Az’ C2)=0
mod& for r< p +q- 2, and

ju:H _A)®H ,(B)~H . ,A4,C,)
is an isomorphism mod% . Since m(C,)=0, (A, C) is
abelian; since Al and Bl are l-connected by the data,
Hz(Az’ C2)= 0, and (Az’ Cz) is 2-connected. By the
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relative Hurewicz isomorphism mod &, (A, C) is (Pp+q-2)-
connected mod & . Thatis, (X; A, B) is (p + q - 2)-connected
mod & . We may assume p = 3, ¢ = 3, and therefore
7T (A, C)-1 (X, B
p( , C) p( )
nq(B, C) ~ nq(X, A)

are isomorphisms mod %~ . We now have a diagram of natural

maps which are isomorphisms mod & .

™ @, C) T m(B, C) T+q-1%i A B)

up(X, B) ® ﬂq(X, A) "p+q-1(x1; A1’ Bl)
1

np-l(Bl) T nq-l(Al) np+q-2(A2’ Cz)

Hp-l(Bl) % Hq-l(Al)—’Hp+q-2(A2’ Cz)

When we consider the universal example and take & = 0, ip ® iq
must correspond either to +[ip, iq] or to —[ip, iq]. Since all
the maps are natural, when we insert the generalised Whitehead

product
P:ﬂp(A, C)® ﬂq(B, C) - "p+q_1(X; A, B)

the diagram is commutative with a fixed sign, either + or -. Hence
P is an isomorphism mod & . This proves the theorem.
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The next two extracts are from works by G. W. Whitehead
and 1. M. James, which were of considerable importance in the
historical development of suspension-theory. For reasons of
space, the extracts have been confined to the statements of the
main theorems. The prerequisite is a certain knowledge of
homotopy theory (see §10 and paper 7).
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ON THE FREUDENTHAL THEOREMS

By GeorgE W. WHITEHEAD
(Received February 18, 1952)

1. Introduction

The suspension homomorphism E:xe(S™) — x,41(S™") is an important tool
in the calculation of homotopy groups of spheres. This homorphism was intro-
duced by Freudenthal [1], who proved that E is onto if ¢ £ 27 — 1 and an
isomorphism if ¢ < 2n — 1. Freudenthal also determined the image of E for
¢ = 2n and obtained some partial results on the kernel of E for ¢ = 2n — 1.
The latter results were completed by the author in [2]. Freudenthal’s proofs
are very complicated, relying heavily on geometrical arguments.

Recently Blakers and Massey [3) have introduced the notion of homotopy
groups of a triad and have shown that the “easy’” Freudenthal theorems are a
consequence of a general theorem on triad homotopy groups. They have also
announced [4] further results on homotopy groups of triads which imply the
Freudenthal theorems in the critical dimensions. Their proofs are very much
simpler than those of Freudenthal.

The group x.:(S™"") is isomorphic with x,(2"*"), where @' is the space of
loops in S™*'. The n-sphere S™ can be imbedded in 2"*' in such a way that the
homomorphism of x(S") into x,4(S™*") induced by the inclusion-map is the
suspension. Thus one can obtain results on the suspension by calculating the
relative homotopy groups x,(2"*', $™). In this way we first obtain a very simple
proof of the ‘“‘easy’’ Freudenthal theorems. This proof does not make use of the
Blakers-Massey theorems, which, however, appear in a different way in the
calculation of the groups », (2", 8™) for ¢ = 2n. Our main result, which was
conjectured in [2], is that there is an exact sequence

E

fan—l(sn) —_ Tq(sn) —E—b ‘l’q+1(Sn+l) L}

7«—1(82’._‘) —P—’ 'l'o-l(S”) — vy,

where H’ is essentially the generalized Hopf homomorphism of [2] and P is
induced by composition with (¢, , ¢,], where ¢, generates x.(S"). We further
show that, if ¢ £ 3n — 2, then every element of x,11(S*"") can be obtained
by Hopf’s construction.

The results of this paper overlap with some recently announced by Pitcher
[5]. Pitcher also makes use of the space 2" (or rather of the space of Frechet
equivalence classes of loops in §**"). However, Pitcher makes use of the Morse
critical point theory, while our proofs are more elementary.
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THE SUSPENSION TRIAD OF A SPHERE

By I. M. JamEs

(Received September 9, 1954)
(Revised June 17, 1955)

1. Introduction

This paper is the third in a series of four. The constructions which were de-
veloped in Reduced product spaces [5),! and On the suspension triad [6], are ap-
plied to the suspension triad of a sphere, with the help of the method of spectral
sequences. There are many applications of the theorems which we shall prove
to the tneory of homotopy groups of spheres, and these will be the subject of
a concluding article, On the suspension sequence.

The definitions and notations of [6] are carried over to the present work. In
particular, S* denotes the euclidean n-sphere

o4+ +2i=1 n=12--).
We study the suspension triad of S”, i.e. the triad
(S"H; E(,E),
where E, , E_ are the two hemispheres into which S" divides S™*, so that
S"M = EF,vE_, S"=E.nE_.

The point
¢ = (_1:0y07 "')

acts as basepoint in these various spaces. We have an exact sequence

(L) - o 1S B 8™ o (S By B — ma(S7) — -,

the suspension sequence of S”, which refers the behaviour of Freudenthal’s
suspension operator, E, to the properties of the triad homotopy group

‘l’r+1(S"+l; Ey, E).

This group has been studied by various authors for values of r less than 4n, es-
pecially by Serre in [9], Toda in [12], and G. Whitehead in [14]. In particular,
the group is known to be zero if r < 2n, and to be cyclic infinite if r = 2n (cf.
Theorem 1 of [2], and the suspension theorems of Freudenthal).” Moreover the
group is certainly finite if r > 2n, by the exactness of (1.1), since the homotopy
groups of spheres are finite with the exceptions of x,(S™) and #4m_i(S*™)(m = 1)
(Proposition 5 on p. 498 of [8)).

' Numbern in aquare brackets refer to the bibliography at the end of this article.
'‘There In 8 convenient summary of these theorems in §3 of [13).
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Consider the natural homomorphism
h:fr(suﬂ; E,,E)— Wr(Sz"H)y

which is defined in §15 of [6]. We shall prove the following three theorems in
Part I of this paper.
TeEeOREM (1.2). Let n be odd. Then

hix(S™™ By, E_) = (1),

TreorEM (1.3). Let n be even. Then the order of the kernel of h is odd, and has
no prime factor grealer than r/n. Also the index of the subgroup

hx(S*Y, E, , E_) C x (S

18 odd, and has no prime factor greater than r/2n.
TuareoreM (1.4). Let n be even, and let p be an odd prime number. If r S 2pn — 2,
then the p-primary component of the kernel of

hix(S*; By, EZ) — 2 (8™)

1s a direct summand of »,(S"*'; E, , E_). If r £ 2pn — 4, then this direct summand
18 1somorphic to the direct sum

(8™ ® Z, + w,(S”+l) *Zy.

In the last assertion of (1.4), the symbols ® and = denote the tensor and tor-
sion products, respectively, and Zp denotes the cyclic group of order p.
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The next paper is an unpublished one by Milnor, to which
many other authors have referred. The work on semi-simplicial
loop-spaces has been carried further by Kan; however, Milnor's
work remains the standard reference for the generalisation of
Hilton's theorem. The prerequisite is a knowledge of semi-
simplicial complexes; see the remarks in §3 and the book by May.
In particular, for the 'geometrical realization' appearing in
Lemma 1, see May chap. Il or Milnor, 'The geometrical
realization of a semi-simplicial complex', Annals of Math, 65
(1957), 357-362.
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ON THE CONSTRUCTION FK
John Milnor

(lecture notes from Princeton University, 1956)

1. Introduction

The reduced product construction of Ioan James [5] assigns
to each CW-complex a new CW-complex having the same homotopy
type as the loops in the suspension of the original. This paper will
describe an analogous construction proceeding from the category
of semi-simplicial complexes to the category of group complexes.
The properties of this construction FK are studied in §2.

A theorem of Peter Hilton [4] asserts that the space of loops
in a union S1 A 4 Sr of spheres splits into an infinite direct
product of loops spaces of spheres. In §3 the construction of FK
is applied to prove a generalization (Theorem 4) of Hilton's theorem
in which the spheres may be replaced by the suspensions of arbitrary
connected (semi-simplicial) complexes.

The author is indebted to many helpful discussions with
John Moore,

2. The construction

It will be understood that with every semi-simplicial
complex there is to be associated a specified base point.
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Let K be a semi-simplicial complex with base point bo'
Denote Sro'b0 by bn‘ Let FKn denote the free group generated
by the elements of Kn with the single relation bn = 1. Let the
face and degeneracy operations ai’ 8 in FK= UFKn be the
unique homomorphisms which carry the generators kn into
1 n’ s. k respectively. Thus each complex K determines a
group complex FK.

It will be shown that FK is a loop space for EK, the
suspension of K. (Definitions will be given presently.)

Alternatively let F+Kn Cc FKn be the free monoid
(= associative semi-group with unit) generated by Kn’ with the
same relation b_=1. Then the monoid complex F*K is alsoa
loop space for EK. This construction is the direct generalization
of James' construction. (See Lemma 4.)

The suspension EK of the semi-simplicial complex K is
defined as follows. For each simplex kn, other than bn’ of K
there is to be a sequence (Ekn), (SoEkn)’ (szEkn), ... of
simplexes of EK having dimensions n+ 1, n+ 2, . In
addition there 1s to be a base point (b ) and its degeneracies (b ).
The symbols (s Eb ) will be 1dent1f1ed with (b The face
and degeneracy operatlons in EK are given by

i+l

a(Ek)_(Ea ) (j=> 0, n>0
s,(Ek ) = (Es, k) i> 0
2,(Ek ) = (b) , 2, (Ek ) = (b))

so(Ekn) = (SoEkn) .
The face and degeneracy operations on the remaining simplexes
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(S:JEkn) = slo(Ekn) are now determined by the identities

i <

5 Si _ g Soaj_l (] > 1)

e 510-1 (i=1#0)
sis G> 1)

; { 0%-1

S.S =

jo .
git! G=1.

It is not hard to show that this defines a semi-simplicial
complex. The following lemma will justify calling it the suspension
of K. Recall that the suspension of a topological space A with
base point a is the identification space of A X I obtaining by
collapsing (A X 1) u (a, x I) to a point.

Lemma 1. The geometric realization |EK’ is canonically

homeomorphic to the suspension of IKI

(For the definition of realization see [6]. Infact the required
homeomorphism is obtained by mapping the point (Ikn, Gn,’ 1-t)
of the suspension of IK[, where Gn has barycentric coordinates
(t,, -+, t,) into the point I(Ekn), 6n+1l € |EK|, where 6,
has barycentric coordinates (1-t, tt, ..., ttn).)

1

Next the space of loops on a semi-simplicial complex K
will be discussed. If K satisfies the Kan extension condition then
K can be defined as in [7]. This definition has two disadvantages:

(1) Many interesting complexes do not satisfy the extension

condition. In particular EK does not.
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2) There is no natural way (and in some casesT no possible way)

of defining a group structure in QK.

The following will be more convenient. A group complex G,
or more generally a monoid complex, will be called a loop space
for K if there exists a (semi-simplicial) principal bundle with
base space K, fibre G, and with contractible total space T.

(By a principal bundle is meant a projection p of T onto

K together with a left translation G X T — T satisfying
A J— 1
©, - 8)-t,=8, (@& -t)

where g, tn = tn if and only if g, = ln; and where g, tn = t;l
for some g, if and only if p(tn) = p(t;l). A complex is called
contractible if its geometric realization is contractible. This is
equivalent to requiring that the integral homology groups and the
fundamental group be trivial.)

The existence of such a loop space for any connected
complex K has been shown in recent work of Kan, which
generalizes the present paper. The following Lemma is given to
help justify the definition.

Lemma 2. If K satisfies the extension condition, and the

group complex G is a loop space for K, then there is a homotopy

equivalence K — G.

' Let K be the minimal complex of the n-sphere n = 2. Then
it can be shown that there is no group complex structure in K
having the correct Pontrjagin ring.
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The proof is based on the following easily proven fact
(compare [7] p. 2-10): Every principal bundle can be given the
structure of a twisted cartesian product. That is one can find a

one-one function
n:GX K- T

satisfying ain = nai for i> 0 and 8;n = ms, for all i, where

801] is given by an expression of the form
o, me k) =mn((@g). (k) 3K).

(For this assertion the fibre must be a monoid complex satisfying
the extension condition.) Thus the bundle is completely described
by G and K together with the 'twisting function' T:Kn -G

where 7 satisfies the identities

n—l;

- _ .
i i+1 i= 0), air_ Tai+1 i=1,

™Sk =1 (@ 7k ). (T9k ) = ok,
Now a map 7 : QKn_l - Gn—l is defined by ?(kn) = T(kn).
From the definition of 2K and the above identities it follows that
7 is a map. From the homotopy sequence of the bundle it is easily
verified that 7 induces isomorphisms of the homotopy groups,
which proves Lemma 2.

To define a principal bundle with fibre FK and base space
- FKn'

EK it is sufficient to define twisting functions 1':EKn +1

These will be given by

i .
TEk )=k , (s Ek J)=1_ Gi> 0).
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Theorem 1. FK is a loop space for EK. In fact the
twisted cartesian product {FK, EK, 7} has a contractible
total space.

It is easy to verify that 7 satisfies the conditions for a
twisting function. Hence we have defined a twisted cartesian
product, and therefore a principal bundle. Let T denote its
total space. Note that T may be identified with FK X EK
except that 60 is given by

ao(gn’ (Ekn-l)) = (aogn- kn_ls (bn—l))

i i-1
9,8, (s Ek . N=1(38 (s ~(Ek

i) @21

It will first be shown that the homology groups of T are
trivial. This will be done by giving a contracting homotopy S for

the chain complex C(T).

Lemma 3. Let G be the free group on generators x o

Then the integral group ring ZG has as basis (over Z) the

elements gx o & where g ranges over all elements of G;

together with the element 1.

The proof is not difficult. Now define S by the rules

0 (n even)

S(lny (bn)) = {

(1, (b )  (@odd

8[(g, - k_, (b)) - (g, (b))]
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n . . .
) iio(-l)l[(sign’ (5,B75k,) - (5,8, (B )]

Sl (8" 'Ek__ ) - (&, (b )]

n s s .
= 2 (Ve (1EQ K

j—r ) = (sjgn’ (bn+1))]

n-r)
where g, Tranges over all elements of the group FKn.

It follows easily from Lemma 3 that the elements for which
S has been defined form a basis for C(T), providing that kn,

the above rules reduce to the identity 0 = 0 if we substitute

k p are restricted to elements other than bn’ bn-r' However

k =b or k__=b . Thisshows that § is well defined.

The necessary identity Sd + dS=1 - £, where
dx = igo (-l)iaixn and where ¢ :C(T) ~ C(T) is the augmentation
(e 2 ai(go’bo) =72 ai(lo, bo)) can now+be verified by direct compu-
tation. Since this computation is rather long it will not be given
here.

Proof that |T| is simply connected. A maximal tree in
the CW-complex |T| will be chosen. Then 1r1(|T |) can be
considered as the group with one generator corresponding to each
1-simplex not in the tree, and one relation corresponding to each
2-simplex.

As maximal tree take all 1-simplexes of the form
(sogo, (Eko))‘ Then as generators of 1r1( IT|) we have all elements
(gl, (Eko)) such that g, is non-degenerate. The relation
alx = (azx) . (aox) where x = (slgl, (soEko)) asserts that

(€, (Bk ) = (€, b)) (5,2 g, (EK )
= (gl’ (bl)) .
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From the 2-simplex (Sog1’ (Ekl)) we obtain

(g, (E3 k) = (s, 2.8 ,(Ed k). (g K, (b))
= (g,k,, (b)) .
Combining these two relations we have

(g, b)) =gk,

®),
from which it follows easily that
(gl’ (bl)) =1

for all g,- In view of the first relation, this shows that ITI is

simply connected, and completes the proof of theorem 1.

The following theorem shows that FK is essentially

unique.

h

Theorem 2. Any principal bundle over EK with any grou

complex G as fibre is induced from the above bundle by a homo-

morphism FK - G.

Proof. We may assume that this bundle is a twisted
cartesian product with twisting function ‘r:(EK)n R e Gn' Define
the homomorphism 7:FK -~ G by ?(kn) = T(Ekn). Since
?(bn) = T(Ebn) = T(so(bn)) = 1n this defines a homomorphism. It
is easy to verify that 7 commutes with the face and degeneracy
operations, and induces a map between the two twisted cartesian

products.
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Corollary. I G is also a loop space for EK then there

is a homomorphism FK — G inducing an isomorphism between

the Pontrjagin rings.

This follows easily using [7], IV Theorem B.

Analogues of theorems 1 and 2 for the construction F+(K)
can be proved using exactly the same formulas. The following
shows the relationship between F+(K) and the construction of

James.

Lemma 4. If K is countable then the realization |F K|

is homeomorphic to the reduced product of IKI .

In fact the product (kn’ k;l, k;'l, o) kn. k' k" ...
maps Kx ... xK into F+K. Taking realizations we obtain a map
|K|x . x’Kl - |F+KI. From these maps it is easy to define a
map of the reduced product of IKI into |F+K|, and to show that

it is a homeomorphism.

3. A theorem of Hilton

If A, B are semi-simplicial complexes with base points
a, b, let AV B denote the subcomplex A [bo] u [ao] X B
of AX B. Let A X B denote the complex obtained from A X B
by collapsing A ¥ B to a point. The notation A(k) will be used
for the k-fold 'collapsed product' A X [ . X A,

The free product G *H of two group complexes is defined
by (G * I-I)n = Gn * Hn. There is clearly a canonical isomorphism
between the group complexes F(A ¥ B) and FA * FB.
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Lemma 5. The complex F(A v B) is isomorphic
(ignoring group structure) to FA X F(B Vv (B X FA)).

In fact we will show that F(A v B) is a split extension:
I-FBY(BX FA)~-FAVY B -FA—-I.

The collapsing map A ¥ B < A induces a homomorphism c¢' of
F(A v B) onto FA. Denote the kernel of ¢' by F'. The inclusion
ALAavB induces a homomorphism i':FA ~ F(A v~ B). Since
c'i' is the identity it follows that F(A Vv B) is a split extension
of F' by FA,

We will determine this kernel F;l for some fixed dimension
n. Let a, b, ¢ range over the n-simplexes other than the base
point of A, B, and FA respectively. Then F(A Vv B)n is the
free group {a, b} and F! is the normal subgroup generated by
the b. By the Reidemeister-Schreier theorem (see [8]) F;l is
freely generated by the elements w(a)bw(a)_1 where w(a) ranges
over all elements of the free group {a} = FA . Thus

. -1
F' = {b, ¢be "} .

Now setting [b, ¢] = beb ¢"! and making a simple Tietze trans-
formation (see for example [1]) we obtain

F! = {p,[b, ¢]}.

Identify [b, ¢] with the simplex b X ¢ of B X F(A). Then we
can identify F;x with F(B v (B X FA)). Since this identification
commutes with face and degeneracy operations, this proves Lemma

128



(10)
Lemma 6. The group complex F(B X FA) is isomorphic

F((B X A) v (B X A X FA)).
The inclusion A = FA induces a homomorphism
F(B X A) — F(B X FA).
A homomorphism
F(B X A X FA) ~ F(B X FA)
is defined by
bX aX ¢~ (bX a)bX ¢a) ' (bX 9).
(This is motivated by the group identity [[b, a], ¢] = [b, a]

[b, ¢a]”'[b, ¢].)

Combining these we obtain a homomorphism
F(B X A) ¥ 7F(B X A X FA) — F(B X FA)

which is asserted to be an isomorphism.
Using the same notation as in Lemma 5 and identifying
b X a X ¢ with [[b, a], ¢] it is evidently sufficient to prove the

following.

Lemma 7. Inthe free group {a, b} the subgroup freely

generated by the elements [b, ¢] is also freely generated by the
elements [b, a] and [[b, a], ¢].
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The proof consists of a series of Tietze transformations.

Details will not be given.

As a consequence of Lemma 6 we have:

Lemma 8. For each m the group complex F(B X FA)

is isomorphic to

F(B X A) KF(BX A X A) X... X F(B X A(m))*

FB x A™ x pa) .

Proof by induction on m. For m =1 this is just Lemma 6.
Given this assertion for the integer m - 1 it is only necessary to
show that F(B X AM™ 1) x Fa) is isomorphic to F(B x A™)) &
F(B x A(m) X FA). But this follows immediately from Lemma 6
by substituting B X A(m'l) in place of B.

Theorem 3. I A and B are semi-simplicial complexes

with A connected, then there is an inclusion homomorphism

F(v., BX A%y - rB x F(a))

which is a homotopy equivalence.

Proof. Every element of F(V:IB x A(l)) is already
contained in

F(v.  BX ADy_ r x A) k... k F x AlM)
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for some m. Hence by Lemma 8 it may be identified with an
element of F(B X FA). Since A is connected, the 'remainder
term' B X A(m) X FA has trivial homology groups in dimensions
less than m. From this it follows easily that the above inclusion

induces isomorphisms of the homotopy groups in all dimensions.

Remark. The complex B may be eliminated from
Theorem 3 by taking B as the sphere SO, and noting the identity
s'%x K=K

Combining theorem 3 with Lemma 5 we obtain the following

Corollary. If A is connected then there is a homotopy

equivalence
© @)
F(A) x F(VizoB X AV C F(AV B).
This corollary will be the basis for the following.

Theorem 4. Let A1’ ey Ar be connected complexes.

Then F(A1 VoY Ar) has the same homotopy type as a weak

infinite cartesian product H:IF(Ai) where each Ai’ i>r, has

the form
A x| ox Ayp)
1 T

The number of factors of a given form is equal to the Witt number

1 u(d)(n/d)!
¢(n1, Tt nr) - Bdlé (nl/d)! ... (nr/d)!
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where n= n, +.,.. + n, 0= GCD(nl, ceey nr).
Proof. For n=1, 2, 3, ... define complexes Ai’ to be
called 'basic products of weight n' as follows, by induction on n.
The given complexes Al, ceny Ar are the basic products of
weight 1. Suppose that

are the basic products of weight less than n. To each

i=1, ..., r, ..., @ assume we have defined a number e(i) < i,
where e(l)=... = e(r) = 0. Then as basic products of weight n
take all expressions Ai x A]. where weight Ai + weight A]. =n
and e(i) = j < i. Call these new complexes Aa+1’ cees AB in
any order. If Ah = Ai x Aj define e(h) = j. (For this discussion
we must consider complexes such as (A X B) X C and

A X (B X C) to be distinct!) This completes the construction of

the A..
i

For each m = 1 define

Rm = F(thm Ah) :
e(h) < m

Thus R1 = F(A1 VoLV Ar)'

Lemma 9. There is a homotopy equivalence

F(A_)X R CR
m m m

+1
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Note that R_ = F(A_ Vv B), where B= A
m m

\'4
h> m h’
e(h) < m

By the corollary to theorem 3 there is a homotopy equivalence

Vit (i) v B) —
(F(A )X F(v._ BX A )CFA_ “YB=R_.

Substituting in the definition of B and using the distributive law

(AVB)XC=(AXC)Vv(BXC(C),

the second factor of the first expression becomes

F(vo v A, x Al
i=0 h>m h m’*°
e(h) < m

But (filling in parentheses correctly) this is just

Fp>m AY=R

e(h) =m

m+1°’

which proves Lemma 9.

Now it follows by induction that there is a homotopy

equivalence

FA)*X FA)X...XFA )XR ., CR =

F(A, V... VA).
1 T
This defines an inclusion of the weak infinite cartesian product
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H;lF(Ai) into R_. Since A, ..., A_ are connected, it
follows easily that the 'remainder terms' Rm are k-connected
where k = © as m — <, From this it follows that the above
inclusion map induces isomorphisms of the homotopy groups in all

dimensions. This proves the first part of theorem 4.

Let ¢(n1, ceey nr) denote the number of Ah having the
form Agnl) x ., X Aﬁ_nr), To compute these numbers consider
the free Lie ring L on generators al, ey ar. Corresponding

to each 'basic product’ Ah = Ai X Aj define an element
o = [ai, aj] of L, for h=r+1, r+2, ... . Then the elements
Oth obtained in this way are exactly the standard monomials of
M. Hall [2] and P. Hall [3]. M. Hall has proved that these elements
form an additive basis for L.

The number of linearly independent elements of L which
involve each of the generators o, ..., @ a given number

n <5 D of times has been computed by Witt [9]. Since his

o
formula is the same as that in theorem 4, this completes the proof.

In conclusion we mention one more interesting consequence

of theorem 3.

Theorem 5. If A is connected then the complex EFA has

the same homotopy type as v;ilEA(i).

The proof is based on the following lemma, which depends
on Theorem 1.

Lemma 10. If A is connected, there is a homotopy

equivalence

EA <« WFA.
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In fact the inclusion is defined by (sioEan) - sio(an, 1n—1’ e
10). It is easily verified that this is a map, and that it induces
a map of the twisted cartesian product T into the twisted cartesian
product W. Since both total spaces are acyclic, it follows from
[7], IV Theorem A that the homology groups of EA map isomor-
phically into those of WFA. Since both spaces are simply connected,

this completes the proof of Lemma 10.
Now from Theorem 3 we have a homotopy equivalence
- L) (i) —
WF(VizlA ) € WFFA .
In view of Lemma 10, and the identity
E(AV B)=EA vV EB,

this completes the proof.
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The next extract, from one of my own papers, merely
proposes a notation for the spaces which arise in the method of

killing homotopy groups (see §10).
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ON CHERN CHARACTERS AND THE STRUCTURE OF THE
UNITARY GROUP

J. F. Adams

Killing homotopy groups. We will briefly recall some ideas from homotopy

theory, in order to fix the notation needed below.

Let X, Y be connected CW-complexes. We call Y a space of type X(1, ...,n) if:

(1) There is a map f: X — ¥ such that f,: n(X) > m(Y) is an isomorphism for
1<r<n, and

(2) m(Y)=0forr > n.

For each X and n, there is at least one such space ¥. Moreover, any such ¥ has the
universal property indicated by the following diagram.

X
\
N
S
Y———-Y
In full, let ¥’ be another space such that ,(¥’) = 0 for r > n; then any map g: X > Y”
can be factored in the form g ~ hf, and this equation determines h: ¥ > Y’ up to
homotopy. It follows that the homotopy type of Y is determined by that of X.

Let W, X be connected CW-complexes. We call W a gpace of type X(m, ..., o) if:

(1) There is a map f: W - X such that f,: m(W) - m,(X) is an isomorphism for
r > m, and

2) m(W)=0forl <r<m.

This notion is justified in a manner similar to the preceding one.

Now suppose that W, X, Y, Z are connected CW-complexes, and that Y is of type
X(1,...,n), Wisof type X(m, ..., o0), where m < n. We call Z a space of type X(m, ..., n)
ifit in

(1) aspaoce of type W(1,...,n), or

(4) & spaoco of type Y(m,...,o0).

!
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These two conditions are equivalent, since each leads to a diagram of the following

form. X<W
o
Y« 2Z
For clarity, we display the types of the four spaces involved in the diagram above:

X(1,...,00)« X(m,...,00)
\ {
X(1,...,n) <« X(m,...,n)

These notions have been presented for CW-complexes, but by applying them to
singular complexes we obtain corresponding singular notions for arbitrary connected
spaces. In particular, given X and given r < 8 < {, we can construct a Serre fibring
F > E - B so that F, E and B are spaces of singular type X(s+1,...,1), X(r, ...,1)
and X(r,...,8).

We will allow ourselves to use the symbol X(m,...,n) to denote some space, not
specified, of type X(m, ..., n).
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The next paper, by Cartan and Serre, are the first
announcement of the results of the French school on the method of
killing homotopy groups (see 8§10). The end of the second note
gives the flavour of practical calculations; the desire to be able
to make calculations is important for motivation in this area.

The prerequisites are a knowledge of elementary homotopy theory
and of homology theory up to spectral sequences (see §§1, 4, 5 of
the introduction).

TOPOLOGIE. — Espaces fibrés et groupes d’homotopie. L. Constructions générales.
Note de MM. Henri Cartan et Jean-Pierre Serme, présentée par
M. Jacques Hadamard.

Construction d'espaces fibrés (1) permettant de « tuer » le groupe d’homotopie 7, (X)
d'un espace X dont les m;(X) sont nuls pour i << n. Cette méthode généralise celle
qui consiste, pour n=1, lorsque X est connexe, & « tuer » le groupe fonda-
mental 7, (X) en passant au revétement universel de X.

1. Soient X un espace connexe par arcs, z€ X, S(X) le complexe singulier
de X. Pour tout entier g1, soit $(X; @, q) le sous-complexe engendré par
les simplexes dont les (¢ —r1)-faces sont en z. Les groupes d’homologie
(resp. cohomologie) de $(X;z, ¢) a coefficients dans G sont les groupes
d’Eilenberg (*) de l'espace X en z; on les notera Hi(X; =, ¢, G),
resp. H(X; z, ¢, G). lls forment des systemes locaux. Rappelons (*)
que =, (X;x)~H,(X; 2z, ¢, Z) pour ¢ > 2.

Définition. — Un espace Y, muni d’une application continue /' de Y dans X,

(*) L'expression « espace fibré » est prise dans le sens général défini par Serre (Ann.
uf Math., i, 1951, p. 425-505). Ce Mémoire sera désigné par [S).
() Ann.of Math,, #5, 1940, p. J07-4471 voir § 32.
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tue les groupes d’homotopie 7;,(X) pour i Zn(r>x1)si=(Y) o pour:. n
et si f définit un isomorphisme de 7,(Y) sur 7,(X) pour ¢ > n.
TreoriMe 1. — Si un espace Y tue les n(X) pour i < n, les groupes d’homo-

logie H;(Y) sont isomorphes auz groupes d Eilenberg H (X5, n 4 1); de mdme
pour la cohomologre.
Cela résulte du :

Lemme 1. — Si une application f d’un Y dans un X appliqgue y€Y ern 2€X ¢t
définit, pour tout i>n, un isomorphisme 7, (Y;y)~ mi(X; x), L’homomorphisme
S(Y; ¥, n+1)>3(X; 2, n+1) défini par f est une chaine-équivalence. (En consi-
dérant le « mapping cylinder » de f, on se raméne au cas ou Y est plongé dans X; le
lemme s'obtient alors par un procédé standard de déformation.)

Le théoréme 1 justifie la notation (X, n -+ 1) pourn’importe quel espace qui
tue les 7;(X) pour /. Zn.

2. TukortME 2. — A tout X connexe par arcs, on peut associer une suile
despaces (X, n)[oun=r1, 2, ... et (X, 1)=X] et d’applications continues f, :
(X, n+1) > (X, n), de maniére que (X, n+1) tue les n,(X, n) pour i Zn,
et que :

(1) lapplication f, munisse (X, n+1) d'une structure d’espace fibré (*) de
base (X, n), ayant pour fibre un espace K[ 7,(X), n —1](*);

(I1) il existe un espace X, de méme type d homotopie que (X, n), et une fibra-
tion de X, de fibre (X, n + 1), ayant pour base un K[ wn,(X), n}.

Il suffira de dire comment (X, n+1), f, et X, se construisent a partir
de (X, »). On utilise d’abord deux lemmes, déja employés par certains
auteurs (*):

Lemue 2. — Etant donné un espace connexe A et un entier k>s1, on peut plonger A
dans un espace U de maniére que w(A)—>7,(U) soit un isomorphisme (sur)
pour i <k, et my(U) =o. [Pour tout a €mi(A) on choisit un représentant g, : Sy —~ A,
ou S; est une sphére de dimension k, frontiére d'une boule E, de dimension k +1; on
« attachke » a A les boules E, au moyen des applications g, ].

LeuMe 3. — Ktant donné un espace A tel que m;(A)=o0 pour { < n,on peut plonger A
dans un espace V de maniére que n,(A) —~ m,(V) soit un isomorphisme sur, et 7, (V) = o
pour i Z n. (Se déduit du lemme 2 par itération, en prenant lespace-réunion.)

Constructions. — Etant donné une application continue ¢ d’un espace A dans
un V=J>X(=,n), soit A’ I'espace des couples (a,w) ol a€A et w est un

(*) Rappelons (¢f. EiLeNeere-MacLang, Ann. of Muth., 46, 1945, p. 180-50y, §17; ibid .,
81, 1950, p. 514-333) que si un espace V satisfait & m,(V)==0 pour tout i < n, m,(V)=r7,
le complexe S(V) a méme type d’homotopie qu'un complexe K(m. n) explicité par ces
auleurs, el qui dépend seulement de n el du groupe 7 (ahélien si 2 ™>.2). D'un tel espace V,
nous dirons que c’est un espace X (7, n); ses groupes d'homologie 1L(x; n) (resp. de
cohomologie) sont les groupes d’Elenberg-MacLane du groupe m, pour Pentier a.

(*) Voir, par exemple, J. 11 C. Wmitenrap, Ann. of Math., 30, 195q, p. 261-263.
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chemin (*) de V d’extrémité p(a); A’ se rétracte sur A, identifié a1'espace des
couples (@, w) tels que w soit ponctuel en ¢(a). L’application g qui, & (a, w),
associe I'origine de w, définit A’ comme espace fibré de base V. Soit B la fibre
au-dessus de o(a,)(4a,, point fixé de A); I'application f qui, 4 (e, ), associe a,
définit B comme espace fibré de base A, de fibre 'espace W des lacets sur V,
qui estun HK(m,n—1).

Appliquons ces constructions a I'espace A = (X, n) supposé déja obtenu,
au groupe ©=7,(X) et a I'injection p de A dans V (lemme 3). La suite
exacte d’homotopie des espaces fibrés montre que B tue les ;(A) pour i < n;
on peut donc prendre (X, 2+ 1)=B, f,=/, X, = A/, et le théoréme 2 est
démontré.

3. Uulisation. — Chacune des fibrations (I) et (II)) définit (pour chaque n)
une suite spectrale (*). Dans la mesure ou I’on connait les groupes d’Eilenberg-
MacLane d’un groupe = donné, on obtient une méthode de calcul (partiel) des
groupes d'Eilenberg de X, et notamment des groupes d’homotopie de X.

La méthode utilisée par Hirsch () pour étudier 7, (X) quand 7y (X)=o0 el que 7, (X) est
libre de base finie, rentre dans notre méthode générale; elle revient a prendre au-dessus
de X une fibre X (m,,1) qui est ici un produit de cercles.

En vue des applications, la remarque suivante est utile : l'espace
W =X[n.(X), n—1] opére & gauche dans B=(X, n+1), et par suite
chaque « € H;[ ,(X), n — 1] définit un endomorphisme %, dela suite spectrale
d’homologie de la fibration (I); on démontre que A, commute avec toutes les
différentielles de cette suite spectrale.

(*) Pour tout ce qui concerne les espaces de chemins, voir [S], Chap. IV.

(*) Il s’agit de la suite spectrale en homologie (resp. cobomologie) singuliére; voir [S],
Chap. I'et II.

{?) Comptes rendus, 228, 1949, p. 1920.
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TOPOLOGIE. — Espaces fibrés et groupes d’homotopie. 11. Applications.
Note de MM. Hengir Carran et Jean-Pierre Serre, présentée
par M. Jacques Hadamard.

Applications de la méthode générale exposée dans une Note précédente (). On
retrouve la plupart des relations connues entre homologie et homotopie; les résul-
tats nouveaux concernent notamment les groupes d’bomotopie des groupes de lie
et des sphéres.

Dans toute la suite X désignera un espace connexe par arcs.

Considérons la fibration (II') de la Note (*), pour 2> 2; en lui appliquant
la Proposition 5 du Chapitre III de [ S], on obtient :

Prorosirion 4. — Pour tout espace X et tout n > 2(*), on a une suite exacte :

Hyn(X, 72+ 1) > Han (X, n) > Hap (72(X); ) > Hon o (X, 1) > Hyp o (X, R) —>...
(1) % o> Hpa (X 1) > Hoa (X R) = Hoo (72(X) 5 ) &> T (X)) > Hay i (X, 1) > 0.

Comptetenu dece que H, . (n; n) =nf2n(n>>2)etH, ,(7; n)=,n (nx3),
on retrouve des résultats de G. W. Whitehead (*).

ConroLLARE 1. — Les groupes d’homologie relatifs H,| $(X; 2, n), 8(X;z,n+1)]
(ou x est un point de X) sont isomorphes aux groupes d’Eilenberg-MacLane
H;(7.(X); n) pour1 ZiZ2n.

Ce résultat semble en rapport étroit avec une suile spectrale annoncée
récemment par W. Massey et G. W. Whitehead (lorsque X est une sphére) (*).

CorotLaRe 2. — St ni(X)=o pouri<net Hy(X)=o0 pour n <j.Z2n (en
particulier st X est une sphére 8,), on a des isomorphismes :

Hy(X, n+1) x Hi(ma(X); 7)) pour nZjZan—1  (nx2).
On notera que, sij<2n—1, les groupes H;, ,(n; n) sont «stables » et

isomorphes aux groupes A;_, ,(7) introduits par Eilenberg-Mac Lane (*), ce
qui fournit une interprétation géométrique de ces derniers groupes.

Proposition 2. — St ny(X)=o0 pour i < n et n< i< m (n et m étant deux
entiers tels que o < n < m), on a une suite exacte :

Hp 1 (X) > Hat (T X) 5 0) > T (X) > Hp(X) > Hi (70 (X); 7) —> 0.

Ceci se démontre au moyen de la fibration (II) et compléte des résuliats

(*) Comptes rendus, 234, 1952, p. 288. Nous renvoyons a cette Note dont nous conser-
vons la terminologie et les notalions.

(*) Le cas n =1 est spécial et a’apporte d’ailleurs rien de nouveau.

(3) Proc. Nat. Acad. Sc. USA, 3k, 1948, p. 207-211.

(*) Bull. Amer. Math. Soc., 57, 1951, Abstracts 54k et 545,

(®) Proc. Nat. Acad. Sc. USA, 36, 1950, p. 657-663.
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d'Eilenberg-MacLane (*) (a I'exception, toutefois, de ceux relatifs a I'inva-
riant k).

Prorosimion 3. — Supposons que =,(X)=o, que les nombres de Betti de X
sotent finis en toute dimension et que l'algébre de cohomologie H*(X, Q)
(Q désignant le corps des rationnels) soit le produit tensoriel d’une algebre
extérieure engendrée par des éléments de degrés impairs et d’une algébre
de polynomes engendrée par des éléments de degrés pairs: si d, désigne le nombre
des générateurs de degré n, on a

rang (7) de @,(X)=d,  pour lout n.

On utilise la fibration (I), et le calcul des algébres de cohomologie
d’Eilenberg-MacLane & coefficients dans Q; on montre par récurrence sur n
que H*(X; n, Q) est lalgébre quotient de H*(X, Q) par l'idéal engendré
par les générateurs de degrés < n.

Remarques. — 1. La démonstration montre aussi que le royau de ’homomorphisme
T2 (X) — H,(X) est un groupe de torsion.

2. La proposition subsiste méme si m, (X) 3£ o, pourvu que 7, (X) soit abélien et opére
trivialement dans H*(X; 2, Q).

3. La proposition 3 s’applique nolamment : «. & une spbére de dimension impaire ;
b. a un espace de lacets sur un espace simplement connexe dont les nombres de Betti
sont finis; ¢. a un groupe de Lie. Ea particulier, les groupes d'homotopie d'un groupe
de Lie sont finis en toute dimension ou il R’y a pas d’élément « primitif » (donc en
loute dimension paire).

Proposition 4. — Soit X tel que n,(X)=o, et q un entier. St H(X) est un
groupe de torsion pour 1<_ i< g, tl en est de méme du noyau et du conoyau )
de I’homomorphisme 9; : Hy(X, q) ~ H;(X) pour tout j. Si en outre la compo-
sante p-primaire (p premuer) de H,(X) est nulle pour 1 < i < q, il en est de méme
du noyau et du conoyau de ¢;. Ceci vaut notamment pour ¢, : 7,(X) - H,(X).

Prorosition 5. — Les groupes d’homologie de la sphére S, dont on a tué le troi-
siéme groupe d’homotopie sont les sutvants :

H;(S;, 4)=o0 pour i impair et Hyy (8, 4) =Z/gZ

(Les premiers groupes d’homologie sont donc: Z, o, o, 0, Z,, 0, Z, 0, Z,, o)
CoroLLAIRE. — La composante p-primatre de 7,,(S,) est Z,, (*).
La proposition 5 permet de retrouver aisément les résultats connus sur
les m(S;), 1=4, 5, 6 : pour =4, c’est évident; appliquant la suite (1)

Ann. of Muth., 51, 1950, p. 514-533.

Le rang d’un groupe G est la dimension du Q-espace vectoriel Q@R G.

Le conoyuu d'un homomorphisme A — B est le quotient de B par I'image de A.

Notre méthode moatre également que Uhomomorphisme f), : m,,(S,) - Z, istroduit
1 Steontod oxt sur.

v

2 - — - -
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pour n=4, et utilisant le fait que H;(Z,; 4)=1Z,, on obticnt 7,(8,) =%,
et Hy(S;, 5) =Z,; en appliquant la suite (1) pour 2 =" ou obtienl une suite

exacte : 7;(S;) > 7(8;) — Zs > 0, qui montre que 7,(S,) a 6 ou 12 élé-
ments (*).

Prorosition 6. — Les groupes =,(S;) et ny(8,) sont des groupes »-primuaires;
7.(8;) est somme directe de L, et dun groupe 2-primaire.

On utilise le fait que H;(Z;; 5)=o0 pour i=+, 8, et H,(Z,; )) =7, (*).

Enfin, si I'on admet les résultats sur les groupes d’Eilenberg-MaclLane obienus par
H. Cartan au moyen de calculs dont le fondement théorique n’a pas encore recu de justi-
fication compléte, on obtient les résultals suivants (que nous donnons donc comme r-onjec-
turauz) : pour n impair >3, et p premier, la composante p-primaire de 7/(8S,)
est L, si i=n—+2p—3, nulle si n+2p—3<i<n+4p—06; celle de n,, ,(8,)
est Z,, de méme (si p 7 2) que celle de 7., ,(8;). Pur exemple, 7,,(8;) est somme
directe de L, et dun groupe 2-primaire.
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The next piece is a summary on generalised homology and

cohomology written by me especially for the present work.
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GENERALISED HOMOLOGY AND COHOMOLOGY THEORIES

A summary by J. F. Adams

It is generally accepted that a functor can be called an
ordinary homology or cohomology theory if it satisfies the seven
axioms of Eilenberg and Steenrod (see Paper no. 2). These axioms
serve to describe the behaviour of the functor on finite complexes.

If we want to describe the behaviour of the functor on infinite
complexes, we add suitable axioms about limits (see Paper no. 15).

A generalised homology or cohomology theory is a functor
which satisfies all of the axioms of Eilenberg and Steenrod except
for the dimension axiom. In addition, we may impose suitable
axioms about limits. In recent years several such functors have been
found useful in algebraic topology. The most important are K-
theory and various sorts of bordism and cobordism theory (see
Papers no. 19, 20, 21, 23, 24). Various forms of stable homotopy
and cohomotopy also satisfy the axioms, but are hard to calculate.

Obviously the beginning of the subject involves one in setting
up various such examples and proving that they satisfy the axioms.
This overlaps with topics to be considered below.

The next part of the subject, which is rather formal, consists
in exploiting the consequences of the six axioms of Eilenberg and
Bteenrod which one does assume. For example, one has the Mayer-
Vietoris sequence, and one has the spectral sequence of Atiyah and
Hirzebruch (see §12 and Papers no. 14, 19). If one wishes to study
also infinite complexes, one exploits the consequences of whatever
axiom one has on limits (see §12 and Papers no. 15, 16, 17),
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The next part of the subject is the relation between general-
ised homology and cohomology theories and homotopy theory. We
will tackle this now, and then we will go on to the final part of the
subject, which is to introduce into generalised homology and co-
homology all the apparatus with which we are familiar in ordinary
homology and cohomology: various products, cohomology opera-
tions, universal coefficient theorems ... .

We may start from the observation that for the ordinary

cohomology groups of a CW-complex X we have
H'(X; M) = [X, K0, n)],

where the symbol K(II, n) means an Eilenberg-MacLane space of
type (II, n) (see §7). This isomorphism is natural for maps of X.
However, the given structure of a cohomology theory includes not
only groups H" and induced homomorphisms f*, but also co-
boundary homomorphisms 6, or equivalently, suspension isomor-

phisms

dm

o: H'X; ) = H" (sx; M),

where SX denotes the suspension of X. In terms of Eilenberg-
MacLane spaces, this isomorphism is induced by a canonical

homotopy equivalence
K(I, n)==K(I, n+1) .

(Here §2Y means the space of loops in Y, as usual.)
If we begin from this example, then, the obvious generalisa-
tion is to consider a sequence of spaces En provided with homotopy
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equivalences En-’ QEn+1' Such a sequence is called an H-spoec-
trum. For exampie, the Eilenberg-MacLane spectrim K1) in
that for which E = K(IL, n). This noiion is sufficiently gencral to
handle the case of K-theory, provided we agree that En may be

equivalent to one pathwise-component of QE For example,

n+l’
we define the spectrum BU by taking E2n to be the space BU
and E2n+1 to be the space U. The equivalence U= BU is the

usual one; and the Bott Periodicity Theorem provides an equivalence
QU- Z X BU.

However, the notion of an £2-spectrum is too restrictive to
be convenient for other applications, such as the theory of cobordism
(see Paper no. 23), We therefore define a spectrum to be a
sequence of CW-complexes En (with base-point) and maps
e, SEn->En+1. Such a map e determines an 'adjoint' map
e;l: En->QE but e;1 need not be a homotopy equivalence. For

n+l’

example, we define the spectrum MU so that its term E2n is the
Thom complex MUn (see Paper no. 23). We have a map
2 -

S MUn MUn 41

Again, if X is any CW-complex, we can construct a

but its adjoint is not a homotopy equivalence.

corresponding spectrum X so that

x ={s"x (n = 0)
~n

P n<0) .

(Here P means a point.) Similarly, if m is any integer (positive,

negative or zero), we can define a spectrum §m by

+
Snm for n+t m= 0

(Sm) _
=~ ’'n
P for n+m< 0,
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We interpret this spectrum as the 'sphere of stable dimension m’'.
In both these examples e is an equivalence (at least for sufficiently
large n), but its adjoint e;l is not.

Given a spectrum E, we can construct from it a generalised
homology theory and a generalised cohomology theory. On this
subject, the definitive paper is G. W. Whitehead, 'Generalised
homology theories', Trans. Amer. Math. Soc. 102 (1962), 227-283.
This paper is highly recommended, but it is rather long to reprint
here, We take first the construction of homology groups. For
convenience of notation, we will use the same letter for the homology
functor as for the spectrum E which determines it. If X is a
CW-complex with base-point, we define its (reduced) E-homology
groups by

E_(X) = DirLim
n I — %

n+m(EmAX) *

Here the 'smash' product WAX is defined to be WxXX/WvX,

as usual. The notation DirLim implies that we are given a direct
m — o0

system of groups and homomorphisms; the homomorphisms are the

obvious ones:

S

”n+m(EmAx) - n1+n+m

(e n1)%

(SEmAX) —_— (E X).

m Fa
l1+n+m m+l

The relative homology groups are defined by

E X, Y= i:n(x/Y) .
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Here X/Y is interpreted to mean X with Y identified to a new
point, which becomes the base-point. This interpretation covers
the case Y= 4.

The definitions of the induced homomorphisms f, and the
suspension isomorphism 0 or the boundary map ¢ are fairly
obvious, and I omit them here.

It can be shown without too much trouble that the functor
thus defined satisfies all the required axioms, including an axiom
on behaviour under limits. It can also be shown that any functor
which satisfies these axioms can be obtained in this way from a
suitable spectrum E. In G. W. Whitehead's original paper (loc.
cit. ) this is proved under the additional assumption that the co-
efficient groups of the functor are countable; but this restriction
can be avoided by using more recent work.

We turn now to the construction of cohomology groups. If
X is a finite CW-complex with base-point, we define its (reduced)
Ef-cohomology groups by

E"(X) = DirLim [s™ "X, E_].
m™—® m

It might appear tempting to use the same definition also for infinite
CW-complexes, but it can be shown that this would lead to the
wrong behaviour with respect to limits. Instead, it seems best to
construct a suitable category whose objects are spectra. We can

then define the E-cohomology of a spectrum X by
E"X) = [s""X, E].

(The suspension or desuspension of a spectrum X can be construc-

ted, for example, by re-indexing the terms Xn, so that
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(SX)n = Xn +1 ) The cohomology of a spectrum is analogous to the
reduced cohomology of a complex. If we want the (reduced) E-
cohomology of a CW-complex X, we take the E-cohomology of
the corresponding spectrum X, where )_{n: s"X for n= 0, as
above,

The construction of the category of spectra takes a little
care to get right; we will follow unpublished work of Boardman.
We restrict attention to spectra such that e is a cellular
homeomorphism between SEn and a subcomplex of En 1 (There
is no essential loss of generality in this.) A subspectrum E' C E
is defined in the obvious way: it is a set of subcomplexes E;l CE

n

such that e, maps SE;1 into E' A subspectrum E' is

n+l°
cofinal if for any cell e o inany En there exists an m such that
m_, o

S €y Em+n'

the end, but we don't say when. A function g:E —F between spectra

In other words, each cell of E gets into E' in

is a sequence of cellular maps 8, En-°Fn such that the following

diagram is (strictly) commutative for each n.

en
SE— " . E

n n+1

S8, 8+1

f
n
SFn__’ Fn+1

However, the notion of a function is rather restrictive; so given

E and F, we consider functions g:E'—~F, where E' varies over
the cofinal subspectra of E. In other words, evenif a cell e,
exists in En’ we consider functions which are allowed to come into

existence on S™e o The sloganis 'Cells now - maps later’.
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Of course, the functions g:E'—-F have to be collected into
equivalence classes. For this purpose we need to define homotopy,
so we need cylinders. Recall that I /¢ is the unit interval with a
disjoint base-point added. If E is a spectrum, we make the
obvious definition of the spectrum E~(I/9); its spaces are the

spaces EnA(I/SZ’), and its maps are the maps

e ~1
n

SE_~(1/9) E 1~/e).
Take two cofinal subspectra E', E" in E. We say that two
functions g' :E'—~F, g":E"—F are homotopic if there is a cofinal

subspectrum E™ contained in E’' and E", and a function
h:E"A(I1/9) = F,

so that the restrictions of h to the two ends of the cylinder are
the restrictions of g' and g" to E™. Homotopy is an equivalence
relation, and the set of equivalence classes is written [E, F].

With these definitions, the functor [E, F] of E can be used
to define a generalised cohomology theory, as required. If we
apply this theory to a finite CW-complex X, it agrees with that
given by the previous definition.

We turn now to the study of products in generalised homology
and cohomology theories. In order to construct such products,

G. W. Whitehead introduced the notion of a 'pairing of spectra’.
A pairing of spectra from E and F to G, in the sense of
G. W. Whitehead, consists of maps

M : EAF =G
n m n+

n,m m
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which satisfy suitable axioms with respect to the maps e fm
and gq. For example, the maps

MUn/\MUm I MUn+m

(see Paper no. 23) define a pairing from MU and MU to MU.

However, G. W. Whitehead did not say (because it is not
true) that every product in generalised cohomology theory arises
from a pairing in this sense. For this reason, and for clarity, it
seems best to explain matters by supposing that we can introduce
a smash-product into our category of spectra, so that if E and F
are spectra, then EAF is a spectrum in good standing, and has
the properties you would expect. If so, we can replace a 'pairing
of spectra' by a morphism from EAF to G. Unfortunately, no
complete treatment of the necessary details has yet appeared in
print. Until it does, the reader should treat the account which
follows as a heuristic explanation which provides the easiest way
of seeing what goes on, but which may need demythologising by
substituting details from G. W. Whitehead or from some other
author,

The definitions of the generalised homology and cohomology
of a spectrum X now read as follows.

E'X) = [ST"~X, E]

n
E (X)=[s", E~X].

(We do not actually need smash products of spectra to extend the
definition of E-homology from complexes to spectra; but we
record these definitions here because these are the ones we shall
use in discussing products.) Until further notice, every object
in aight is a spectrum.
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We will introduce the following four products.

EP(x) ® F4Y) »~ E~F)P T 4x~Y)
E (X) ® F_(Y) = (E~F),  (XAY)
EP(X~Y) ® F (0 = E~F)P x)

P S -> S
EP(X) ® F (X~Y) = (B~F) (V)

The notation we use is
xp ® yq - xpqu
X @ y - X /\y

p ‘a ‘p—q
wP By —=wP/
Yq Yq

LOw =x\w
q q

for the four products in order. A few remarks on the notation may
help to explain the conventions used here, The notation ~, ~ for
the 'external smash products’ incorporates a bar above or below

to show whether we are dealing with contravariant functors or
covariant ones. The two slant products may be thought of as
analogous to fractions; this is particularly helpful when we come
to the associativity laws. The notation is chosen so that a 'fraction’
has the same variance as its numerator and the opposite variance
to its denominator; the dimension of a 'fraction' is that of its
numerator minus that of its denominator. The cohomology variable
appears on the left and the homology variable on the right (as in

the classical Kronecker product, when one considers cochains as
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functions defined on chains). The numerator always lies in a
homology or cohomology group of XAY ; the denominator lies
in a cohomology group of X if it acts on the left of X~Y, ina
homology group of Y if it acts on the right of X~Y. Finally,
the left-hand variable in our products always lies in E-homology
or E-cohomology, the right-hand variable in F, and the result
in E~F.

Of course, if we are given a map of spectra
u:E~AF -G

(which is our analogue of a pairing of spectra) then we can apply
it to a product lying in (for example) (EAF)p+q(XAY) and
obtain a result lying in GPTYUXAY). Similarly for the other
three cases.

The definitions of the products are forced: they go as

follows.

(i) Suppose given

B} x ) y
sPArx - E, s%y = F.

Form

1~A7Al X~y
S PAg A~y — S PAxAs Ay

EA~F .

(Here, and in what follows, 7:UAV <= VAU is the usual map

which interchanges the two factors.)
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(ii) Suppose given

X y
sP—+EAX, si—FAY.

Form
XAy 1ATAl

SPAasd —— + EAXAFAY E~AFAXAY.
(iii)  Suppose given

_p w y

SPAaxAay—=E, sl—sFAaY.
Form

l1Ay~l
sPAglinx SPAFAY~AX
p
wAnl

S PAXAYAF ——— EAF.
(Here £ is the obvious permutation map.)

(iv) Suppose given

_ X w
SPAx—sE, 8 — FAXA~Y.
Form
lAw
SPAsd — = sPAFAxAY
1InTAl
_ x~1Al
SPAXAFAY E~AFAY .
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Note that in (iii) and (iv) the order of composition agrees
with the order of the variables in the product.

These products are natural for maps of E and F, ina
sense which the student should make precise. The external smash
products are also natural for maps of X and Y.

The behaviour of the slant products for maps of X and Y
is given by the following formulae. We suppose given maps

E:X=X', n:Y-Y'.

(i) Suppose given w' GEp(X'AY') , YV E Fq(Y). Then
((E~n)*w") /y= &' /(n.Y)) .

(ii) Suppose given x’ GEP(X'), w € Fq(XAY) . Then
X'\ ((§AM), W) = N, ((§*x") \w) .
The external smash products ~ and A satisfy anti-

commutative laws which are fairly obvious. We can also formulate

eight associativity statements, as follows.

@) ¥ x €EP(X), y eFLY) and z €G"(Z) then
(xAy)~z = x~(y~z) .
(ii) If x GEP(X), y GFq(Y) and z €Gr(Z) then

(xAy)~z = xA(y2z) .

158



(13)
(iii) ¥ xe¢ Ep(X), u € Fq(YAZ) and z € Gr(Z) then

x~(u/z) = (x~v) /z.

(ivv If xeEP(X), w € F (X~Y) and z € G (Z) then
x\WwW)rz=x \ (wAz) .

vV ¥ teEP(XAYAZ), z € F,(Z) and y € G (Y) then
(t/z) /y =1t/ (7.(z~y).

(Note that z~y lies in (FAG)q+r(ZAY) and 7,(z~y) lies in
(FAG)q+r(YAZ). )

(iv) If ye Ep(Y), X € Fq(X) and t € Gr(XAYAZ) then
y\x\t) = (T*(y~x)) \t.

(Note that y~x lies in (EAF)p+q(YAX) and 7*(y~x) lies in
E~FPTUXAY).)

(vii) If ve Ep(XAZ), y € Fq(Y) and u € Gr(Y/\Z) then
v/(y\u) = [A~7)*(vAy)]) /u.

(Note that v~y lies in (E~F)PTYXAZAY) and (1~7)*(vAy)
lies in (E~FPTYxAYA~Z).)
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(viii) If w e EP(XAY), y €F (¥) and V €G (XAZ) then

wA)\v=w \[(T~1), (y~V)].

(Note that y~v lies in (FAG)q +r(YAXAZ) and
(TAD,yAv)  liesin  (FAG) | (XAY~2Z).)

We note that the laws (iii) to (viii) are perfectly acceptable
as rules for manipulating fractions, at least if we ignore the 'switch
maps' 7 necessary to keep X, Y and Z in the right order. For

example, we remember (iii) as stating that
x(u/z) = (xu)/z .

The associativity laws can all be proved by diagram-chasing,
provided that the smash-products in our category have the proper-

ties one expects.
One can also consider the case in which we incorporate

pairings into the definition of our products; suppose we are given

pairings
a:EAF —=H
B : FAG—K
v : HAG —=L
6 :E~AK —=L .

Then the associativity laws need as part of their data the commuta-

tivity of the following diagram.
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EAFAG HAG
1~B Y
5
E~K - L

(The commutativity is supposed to hold in our category, that is,
'up to homotopy'.) With this data, the associativity laws in this
form are easily deduced from those given above, by naturality.

Next we recall that in the case of CW-complexes the 0-
sphere acts as a unit for the smash-product; so one of the proper-
ties we expect of the smash-product in our category of spectra is
that the spectrum s° should act as a unit for the smash-product.
Assuming this, we can identify E—n(SO) with En(SO); each group
is the coefficient group ﬂn(E) = [Sn, E]. With this identification,
we have the following results.

(i) ¥ x eEP(X), te uq(F) then
XAt = x/t.

I t=1:8"~8° then
x~1 = x/1=x.

(ii) If sce€ wp(E), y € Fq(Y) then
sAy = sVy.

i s=1:8"~8° then
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1~y = 1y =y.

(i) I x €EP(X), y €F(X) then
x/y=xY in lq_p(EAF) .

The third part, of course, gives us the definition of the
Kronecker product for generalised theories.

Any other identities which are needed are deduced by com-
bining the results which we have listed above. In particular, since
the suspension isomorphisms can be defined by taking products
with suitable classes on Sl, the properties of each product with
respect to the suspension isomorphisms follow from the associative
laws.

The products which incorporate a 'pairing’ EA~F -G
are particularly convenient when we can take E = F = G. We say

that E is a ring-spectrum if we are given morphisms
L:E~E - E
~E
which play the part of a product map and a unit map, and make the

obvious diagrams commutative. We then say that F is a module-

spectrum over E if we are given a morphism
v:EA~AF - F

which makes the obvious diagrams commutative.
So far we have been dealing with products in the homology
and cohomology groups of spectra. It is now time to return to

complexes. When we consider CW-complexes instead of spectra,
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and relative groups instead of reduced absolute groups, we use the

following equivalence:
(X/A) ~ (Y/B)— (XXY) / (AXY v XXB) .

So, for example, we derive from the external smash-product (for
spectra) an external cross product in the relative cohomology of
pairs of complexes; this is a map

EP(x, A) ® F4(Y, B) — (E~F)P 4xxyY, AXY U XxB) .

Or, of course, if we are using a pairing EAF — G the result lies
in GP +q(X><Y, AXY u XxB). It seems appropriate to write
this product X instead of ~. Similarly for the other three
products.

These products inherit from their predecessors properties
of anticommutativity, associativity, and units; but the spectrum
S0 is now replaced by the point P, since P/¢ = s’

When we are dealing with relative groups, we have formulae
for the behaviour of our products under the boundary or coboundary
map; these are deduced from the analogous formulae giving the
behaviour of our previous products under suspension isomorphisms.
The proofs involve some tedious diagram-chasing. The results are
strictly comparable to those results for ordinary homology and
cohomology which are proved using the ordinary formula for the
coboundary of the product of two cochains, or more generally,
using the fact that the two Eilenberg-Zilber equivalences are chain
maps. Compare Spanier 5. 3.15 (p. 235), 5.6.6 (p. 250), 6.1.3
(p. 287).

One can now introduce internal products (cup and cap
products) by using the diagonal map 4: X - XXX, as usual. More
precisely, let X be a CW-complex with subcomplexes A and B;
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then A maps AUB into AXX uXXB, so0 we can define the cup-
product

EP(X, A) ® Fi(x, B) — (E~F)PT9(x, AuB)

XUy = A¥(xXy).
Similarly, we define the cap-product

P - A
EP(X,A) ® F (X, AUB) ~ (E FypB)

x Ny =x\(4,y) .

Although we have so far considered our generalised homology
and cohomology functors as defined on CW-pairs, we can extend the
definition to more general spaces. For example, let X be any
space; we may define the 'singular E-cohomology of X' to be the
E-cohomology of any CW-complex weakly equivalent to X (such
as the geometrical realisation of the total singular complex of X).
(A weak equivalence is a map inducing isomorphisms of homotopy
groups.) Similarly for homology groups, or relative groups of
pairs.

Again, let K be a compact subset of a manifold M; then
we can define the 'Cech E-cohomology of K' by

E "(K) = InvLim E™(U)

where U runs over open subsets of M which contain K. (The
cohomology group E"(U) is 'singular'.) Similarly for compact
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pairs K, L.

At this point the student will find that we have completed
enough formal machinery to carry over almost word-for-word the
account of duality in manifolds given in Spanier, Chapter 6 Section 2.
(Preferably one avoids Spanier's reference to 4.7.13 by
remarking that in the main proof we only need 6. 2. 12 for a simplex
linearly embedded in R".)

It is not necessary to say very much about cohomology
operations in E-cohomology. The study of stable cohomology
operations in E-cohomology comes down to computing E*(E). This
has been done for the spectrum E = MU (see Paper no. 23).
Useful unstable operations are known for the case of K-theory,

E = BU (see Paper no. 21).

For the universal coefficient theorem, and for some further
reading, see my 'Lectures on Generalised Cohomology', Springer-
Verlag, Lecture Notes in Mathematics No. 99, especially chapters
1 and 3.
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The next piece, by Dold, offers a good exposition of the
subject. It assumes a fair familiarity with the usual machinery
of algebraic topology.
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Matematisk Institut, Aarhus Universitet

RELATIONS BETWEEN ORDINARY AND EXTRAORDINARY
HOMOLOGY

Albrecht Dold

Colloquium on Algebraic Topology, 1-10 August, 1962

1. Homology theories

Let W be the category whose objects are pairs (X, A)
of finite CW-complexes (or of the same homotopy type) and whose
morphisms are homotopy classes of maps. A (extraordinary)
homology theory h on W with values in A (= abelian category)

is a sequence of covariant functors h :W ~ A, q € Z, together
with natural transformations ¢= @ :hq(X, A) - hq_l(A) (connec-

q
ting morphism) such that

(EC) h(inclusion) : h(B, B N A) = h(A U B, A)
for subcomplexes A, B C X, and such that the sequence

LS) h X—-h X, A)~h A—-h X—-h (X, A
(LS) 1% A) =B A= h X = h (X, A)

q+l
is exact.

One then easily proves h(X, A) = h(X/A, *) where X/A=X
with A shrunk to a point *. The graded object h = h (point) is

called the coefficient object.
167



(14)
Examples. (i) If h is a homology theory and t:A — Al

an exact covariant functor, then t o h is a homology theory.

(ii) (cf. Eilenberg-Steenrod) For every G € A thereis a
unique h (up to equivalence) such that ﬁq =0 for q#0, and
h0 = G; for this h one writes hq(X, A) = Hq(X, A; G).

(iii) Given h we get a new homology theory s"h (= n-th suspen-
sion of h) by shifting the indices by n, i. e. (snh)q =h, o
(iv) A direct sum of homology theories is again a homology
theory. In particular, for every graded G = {Gn] we put

Hq(X, A;G) = @an_n(X, A; Gn). This is the 'ordinary homology
with coefficients G'.

(v) Given h and a fixed pair (L, M) € W one defines a new
homology theory h X (L, M) by

[h X (L, M)]q(X, A):hq(XX L, XX MUAX L);
the new connecting morphism is the composite

hq(X>< L, XX MUAX I..)"hq_l(X>< MU AX L)~

(EC)
= (AXL, AXM);

hy (XX MUAX L, Xx M)
the new coefficients are h X (L, M)” = h(L, M) .

If L is a Moore space L(7, n), and M = * a point one
writes [h X (L, M)]q+n(X, A) = hq(X, A; 7), and one has an
exact universal coefficient sequence
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(uc) o - hq(X, A®nm- hq(X, A; 7)) —~ Tor(hq_l(X, A), 7) - 0.

A special case of (UC) is the suspension isomorphism

(0)  oh (X, A) = Xx 8, Xx *xyuAx gh=

hq+1(

hy 1 (SCK/A), %) ;
where s' = circle, * = base point, S = suspension, A # g. One
establishes (o) in the usual way and uses it to prove (UC).

It follows from (o) that h factors through the quotient
category W of W whose morphisms are stable homotopy classes

of maps.

(vi) If (L, *) is a topological space with base point, one defines

a group valued homiolcgy theory HL, and a cohomology theory HL

(= homology theory with values in the dual category) by

L) nf;(x, A) = lim sy, sNix/a),

N—w T

. +
my) ndx, &) =timg_ osN(x/a), s\ 9L

_—
]

stable homotopy classes of maps with base point). This general-
ises to spectra (see G. W. Whitehead).

Since every homology theory h factors through the stable
category W we can, for (L, M) € W, define a natural transfor-

mation

pb/M -
T (X, A) ® by (L, M) =~ b, (X, A)
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which for fixed f € II(II"/M(X, A) reduces to

h(f)
T (L, M) =y, o 87 (LM —hy (ST (R/A)) =

hyan® A) -

In particular, if (L, M) = (SO, *) this becomes

(T) (X, A)® h~h(X, A),

where n? = i-th stable homotopy group. We shall see that T is
an isomorphism if h is a vector space over Q (= rationals);
note already that in that case the left side of (TI‘) is a homology
theory by example (i), and T is a transformation of homology
theories. --A dual construction and result holds for n; and

cohomology--.

(vii) The theory of vector bundles gives rise to the cohomology
i bl
t_heorles K{, and K0 .

2. h-fibrations and their spectral sequence

Let h be a homology theory and #m:E - B a map in W.
Define an exact couple (A, C) (cf. Massey) by

_ -1.(p) _ -1.(p) -1p(p-1)
qu_hp+q(1r BYY), and Cpq_hp+q(” BY, 7 B ),

where (p) denotes the p-skeleton, and where all pairs are assumed

to lie in W. The corresponding spectral sequence converges to
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E.__=(F hE)/(F_ .h E) where F hE = im[h(n"B(p)) ~ hE].
p, n-p pn p-1'n p
The couple (A, C) (and hence the spectral sequence) are natural
with respect to the variables n and h.

Assume now 7 is an h-fibration, i. e. is such that for every
simplex A C B and every vertex z € A the inclusion induces an
isomorphism h(TT_IV) = h(n'lA). (If one wants to avoid triangula-
bility of B, one uses a corresponding definition for maps E' — A
induced from 7 by singular simplices A — B.) Then one finds

for the E'- and E’-terms of the above spectral sequence

Theorem 1 (cf. Atiyah, 2. 6). Eiq = C,(B, HqF) =
cellular chain complex of B with coefficients ﬁq’ hence

2
pa

ES = Hp(B, th) ,

where h_ is the local coefficient system given by {hq(u'lv) }
v € B(0),

Remark. If h is also defined for infinite CW-complexes
and commutes with direct sums, then the theorem is valid for all
finite dimensional B. If h also commutes with direct limits,
then B can be an arbitrary CW-complex. If, moreover, weak
homotopy equivalence induce h-isomorphisms, then B can be an
arbitrary space.

The geometric realization of a Kan-fibration is always an
h-fibration, because then v o la. Similarly, Serre-

fibrations are h-fibrations.
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3. The case 71=id: B— B

In this case the fibre F is a point, the system h is constant
and equals h, hence a spectral sequence Hp(B, ﬁq) hnB which

is natural in (B, h).

Corollary 1. I f{:B — B' is a continuous map such that
f,:H(B, h) = H(B', h) (in particular, if integral homology is mapped
isomorphically) then f, :h(B) = h(B'). In particular, H( , Z)-

fibrations are h-fibrations for all h.

Corollary 2. If 7th—~h' isa natural transformation of

homology theories such that ;ﬁ > E', then 7 is an equivalence.

Corollary 3. If h is a homology theory such that h isa

Q-vectorspace, then

T:73(X, A) ® h= h(X, A) ;
dually

n;(X, A) ® h* = h*(X, A) for cohomology.

It is enough to prove this for (X, A) = (SO, *).  But then n:(x, A)
is the stable homotopy of the sphere, hence finite except for q = 0
(and = Z there) after Serre, hence nf(So, ) ® h= ni(so, *) B

h = h=h(s’, *).

Corollary 4. For every homology theory h,

h(X, A)® Q¥ H(X, A;h ® Q)
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since both sides equal 75(X, A) ® h® Q by Cor. 3. In particular,
the differentials d* of the spectral seq;ence become zero after
tensoring with Q, d® Q=0.
Essentia—lly, the ;ame argument shows

Theorem 2. Let h, h' be a homology theories, ¢:fi - h'

a morphism (not necessarily degree-preserving or homogeneous)

and assume h' is a vector-space over Q. Then there exists a

unique natural transformation &:h - h' which extends ¢ and

commutes with the connecting morphism (equivalently: commutes

with the suspension isomorphism). I ¢(hi) - hi , then & isa

transformation of homology theories.

E.g. there is a unique $:K* — H*( , Q) which takes the
generator of K%l (point) = Z into 1. It is called the Chern
character, ch.

4, Multiplicative cohomology theories

A (group-valued) cohomology theory h is multiplicative
if it is equipped with a natural map (a multiplication

. : X
h'(x, A) x nl(y, B) - h'Yixx v, Xx BuAX V),

all i, j
which is bilinear, associative, commutative (in the graded sense),

and has a unit 1 € ho(so, *). Moreover, the following diagram has

to be commutative ("comparibility with the connecting morphism"')
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hi(a) x W(y, B) htla x v, A x B)

(EC)
axid i+
KW' IXx BUAXY, XxB)
d

1+1 1+J+1

(X, A)xh(Y, B)— (XXY, XX BUAXY)

Via the diagonal map X — X X X the exterior product X
becomes an interior product. In particular, h(X, A) is a graded
ring (with unit if A = ¢), and 9:h(A) = h(X, A) is an h(X)-module
homomorphism. The coefficients h forma graded commutative
ring with unit, and all maps of the theory are h-module homomor-
phism,

The axioms for a multiplication can, of course, also be
formulated in terms of the interior product. Also, the conditions
can be weakened in some places. Examples of multiplicative
theories are: Ordinary cohomology H* with coefficients in a ring,
stable cohomotopy groups n; , and K*-theory.

Some of the implications of a multiplicative structure are

as follows.

Proposition 1 (cf. Steenrod). Let yn ehn(sn, *) be the
element corresponding to 1 € h® under the n-fold suspension
isomorphism h"(S", *) = h%s® *) = h°. Then

i+l

y1x:n'(X, A) ~h" s  x X, st x AuxxX) =

hi*l(scx/A). )
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agrees with the suspension isomorphism o, in particular,

n 1 1 1
Yy =y Xy X...Xy .

Proposition 2. Let h, h' be multiplicative cohomology

theories, h' a Q-module, ¢:f1 -h' a homomorphism, &:h = h'

its unique extension (see theorem 2). U ¢ is multiplicative (i. e.

a homomorphism of rings with unit) then & is multiplicative.

This applies, for instance, to the Chern character.
Proposition 1 allows, by the way, to replace the o-compatibility-
condition for & (see theorem 2) by the condition 'd>(-yl) = y'l'
(plus multiplicativity).

Proposition 3. Let mE — B be an h-fibration, and assume

there are elements a,a, ..., a, € hE whose restriction to the
fibore F form a base of the h-module hF. Then hE is a free
hB-module (via hw) with base a,a

., a_.

2° T

For the proof one simply notes that one has an El—isomor-
phism of exact couples

COC®...dC~-C',

e - m™(z.) a,
(), 2, ..., 2) = Im@)a,,

where C' resp. C is the exact couple of 7 resp. idB.
This applies to h = K’i‘] if mE — B is the projective
bundle associated with a Gl(n, C)-bundle, or if E=B X F, and
H(F) is free. Other example: —I—Jet m:E - B be an n-plane bundle
(or micro-bundle), and let E’ be the complement of the central
section. Call the bundle h-orientable (compare G. W. Whitehead)

if there exists an element u € hn(E, EO) whose restriction to the
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fibre is yn € hn(F, FO) = hn(l;!n, l;n-o) = hn(Sn, *). Then, apply-
ing Prop. 3 to the relative h-fibration (E, EO) one gets the

1R

Thom-isomorphism; ¥:h'(B) — h''™E, E"),

¥(z) = u 7*%(z) .

In particular, there results for h-orientable n-plane bundles an
exact Gysin-sequence

itn-1

0
. h())- . hz°) . .
h E? ~ i+ng ptRE & i+l

B———h E h" "B.

(j:B = E the central section).

For h=H*( , __Z) orientability has the usual meaning; for
h= K{J it is more restricted and holds for U(1)-Spin-bundles (i. e.
if w, o= o, BW2 = 0; Atiyah-Hirzebruch). 1:;- orientability implies
h-orientability for all h and is equivalent to being stably fibre

homotopically trivial (compare G. W. Whitehead).

Theorem 3. If h is a multiplicative cohomology theory,

then the spectral sequence of an h-fibration mE — B is multiplica-

tive, i. e, every Er is a graded commutative ring, the differential

dr is a derivation, Er +1 is the homology ring of Er’ the multi-

plication in E2 is the ordinary cup-product, and the one in E_

is induced from h(E).
For K-theory Atiyah-Hirzebruch had already established
the multiplicative properties of Er’ and they conjectured that the

dr are derivations. I have been informed by Hirzebruch that, since,
Atiyah has also proved this conjecture.
Concluding, I wish to thank E. Dyer for many stimulating

conversations.
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The next paper, by Milnor, is the foundation paper on the
cohomology of infinite complexes. It is fairly self-contained; the
only prerequisite is some familiarity with axiomatic homology
theory. To study the cohomology of infinite complexes, Milnor
introduces an algebraic gadget, written Liml, the derived functor
of the inverse-limit functor. For the applications, one needs to
know conditions under which Lim® is zero; these are provided
by the next two extracts. The extract by Atiyah introduces the
Mittag-Leffler condition. It is implicit, but not explicit, in this
work that the Mittag-Leffler condition is sufficient to ensure the
vanishing of Liml; this is therefore an exercise for the reader.
The extract by Anderson relates all this to the spectral sequence

mentioned in §12.
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15 ON AXIOMATIC HOMOLOGY THEORY

J. MILNoR

A homology theory will be called additive if the homology group of
any topological sum of spaces is equal to the direct sum of the homology
groups of the individual spaces.

To be more precise let H, be a homology theory which satisfies the
seven axioms of Eilenberg and Steenrod [1]. Let .97 be the admissible
category on which H, is defined. Then we require the following.

Additivity Axiom. If X is the disjoint union of open subsets X,
with inclusion maps i,: X, — X, all belonging to the category .o, then
the homomorphisms

tox: H(X,) — H(X)

must provide an injective representation of H,(X) as a direct sum.’
Similarly a cohomology theory H* will be called additive if the
homomorphisms

i* HYX)— H*(X.)

provide a projective representation of H*(X) as a direct product.

It is easily verified that the singular homology and cohomology
theories are additive. Also the Cech theories based on infinite coverings
are additive. On the other hand James and Whitehead [4] have given
examples of homology theories which are not additive.

Let 97~ denote the category consisting of all pairs (X, A) such that
both X and A have the homotopy type of a CW-complex; and all con-
tinuous maps between such pairs. (Compare [5].) The main object of
this note is to show that there is essentially only one additive homology
theory and one additive eohomology theory, with given coefficient group,
on the category 97".

First consider a sequence K, C K, C K, C --- of CW-complexes with
union K. Each K; should be a subcomplex of K. Let H, be an addi-
tive homology theory on the category o7 .

LeMMA 1. The homology group H,(K) i3 canonically isomorphic
to the direct limit of the sequence

Hw(Kx) - H;(K,) - Hq(Ka) — e

Received February 6, 1961.

1 This axiom has force only if there are infinitely many X,. (Compare pg. 33 of
Eilenberg-Steenrod.) The corresponding assertion for pairs (X«, As) can easily be proved,
making use of the given axiom, together with the ‘‘five lemma.”
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The corresponding lemma for cohomology is not so easy to state. It
is first necessary to define the “first derived functor” of the inverse
limit functor.®? The following construction was communicated to the
author by Steenrod.

Let A, «>— A,«> A, «— -+ be an inverse sequence of abelian
groups, briefly denoted by {A;}. Let IT denote the direct product of the
groups A;, and define d: 11 — I by

d(a, a,, --+) = (a, — pas, a; — Pa;, G; — Pa,, *++) .

The kernel of d is called the inverse limit of the sequence {4,} and will
be denoted by L{A;}.

DEFINITION. The cokernel I7/dIl of d will be denoted by 2'{A;}; and
Q' will be called the derived functor of L.

Now let K, c K, C .- be CW-complexes with union K, and let H*
be an additive cohomology theory on the category 97 .

LEmMA 2. The natural homomorphism H*(K)— {H™(K))} is onto,
and has kernel isomorphic to ¥'{H*'(K,)}.

REMARK. The proofs of Lemmas 1 and 2 will make no use of the
dimension axiom [1 pg. 12]. This is of interest since Atiyah and others
have studied “generalized cohomology theories” in which the dimension
axiom is not satisfied.

Proof of Lemma 1. Let [0, ) denote the C W-complex consisting
of the nonnegative real numbers, with the integer points as vertices.
Let L denote the C W-complex

L=K x[0,1]]UK, x[1,2] UK, x[2,3]U ---;

contained in K x [0, ). The projection map L — K induces isomorphisms
of homotopy groups in all dimension, and therefore is a homotopy equiv-
alence. (See Whitehead [6, Theorem 1]. Alternatively one could show
directly that L is a deformation retract of K x [0, «).)

Let L, C L denote the union of all of the K; x [t — 1, 7] with 7 odd.
Similarly let L, be the union of all K; x [¢{ — 1, 7] with ¢ even. The
additivity axiom, together with the homotopy axiom, clearly implies that

H(L)~ H/(K,)D H(K,) D H(K)D -+ -

with a similar assertion for L,, and similar assertions for cohomology.
On the other hand L, N L, is the disjoint union of the K, x [i{], and

' This derived functor has been studied in the thesis of Z-Z. Yeh, Princeton Univer-
wity 19068; and by Jan-Eric Roos [8].
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therefore
H(L UL)~ Ht(Kl) ® H.(K,) D H(K)) ®---.

Note that the triad (L; L,, L,) is proper. In fact each set
K, x [1 — 1, 7] used in the construction can be thickened, by adding on
K, , x [t —38/2,i — 1], without altering its homotopy type. Hence this
triad (L; L,, L,) has a Mayer-Vietoris sequence. The homomorphism

Y1 H(L, N L)) > H(L,) ® H.(L,)
in this sequence is readily computed, and turns out to be:

‘I’(hbh’h “';0’0: "')
= (hy, Dby + by, Dy + by, +++) D (—phy — By —Phy — hy, +++) ;

where h; denotes a generic element of H, (K,), and p: H (K,) —» H(K,.)
denotes the inclusion homomorphism.

It will be convenient to precede +» by the automorphism a of
H/(L, n L) which multiplies each k; by (—1)'*'. After shuffling the
terms on the right hand side of the formula above, we obtain

"!"a(hu h,, "')= (hn h: - phnhx —ph,, h’«‘_‘ ph;, "‘) .

From this expression it becomes clear that v+ has kernel Zzero, and has
cokernel isomorphic to the direct limit of the sequence {H,.(K,)}. Now
the Mayer-Vietoris sequence

00— Hy(L, 0 L)~ H(L) ® HoL) — H(L)—> 0

completes the proof of Lemma 1.
The proof of Lemma 2 is completely analogous. The only essential
difference is that the dual homomorphism

H*L, 0 L) <~ H*(L,) ® H*(L,)

is not onto, in general. Its cokernel gives rise to the term ¥'{H*(K))}
in Lemma 2.

Now let K be a possibly infinite formal simplicial complex with sub-
complex L, and let | K| denote the underlying topological space in the
weak (=fine) topology. (Compare [1 pg. 75]) Let H, denote an addi-
tive homology theory with coefficient group Hy(Point) = G.

LEMMA 3. There exists a natural isomorphism between H(| K|,|L|)
and the formally defined homology group H(K, L; G) of the simplictal
pair.

Proof. If K is a finite dimensional complex then the proof given
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on pages 76-100 of Eilenberg-Steenrod applies without essential change.
Now let K be infinite dimensional with n-skeleton K*, It follows from
this remark that the inclusion homomorphism

H( K*{) = H( K**'|)

is an isomorphism for n > q. Applying Lemma 1, it follows that the
inclusion

H(|K*|) - H( K|)
is also an isomorphism. Therefore the inclusion
H(K*|,|L*)—> H( K|,|L|)

is an isomorphism for n > q. Together with the first remark this com-
pletes the proof of Lemma 3.

The corresponding lemma for cohomology groups can be proved in
the same way. The extra term in Lemma 2 does not complicate the
proof since £’ = 0 for an inverse sequence of isomorphisms.

Uniqueness Theorem. Let H, be an additive homology theory on the
category 7~ (see introduction) with coefficient group G. Then for each
(X, A) in 9~ there is a natural isomorphism between H (X, A) and the
qth singular homology group of (X, A) with coefficients in G.

Proof. Let |SX| denote the geometric realization of the total
singular complex of X, as defined by Giever, Hu, or Whitehead. (Refer-
ences [2, 3,7].) Recall that the second barycentric subdivision S”X is
a simplicial complex. Since X has the homotopy type of a CW-complex,
the natural projection

|SX|=|8"X|-X

is a homotopy equivalence. (Compare [7, Theorem 23]). Using the five
lemma it follows that the induced homomorphism

H(S8"X|,|S"A|) > H/(X, 4)
i8 an isomorphism. But the first group, by Lemma 3, is isomorphic to
H.(S"X, S"A; G) ~ H(SX, S4;G),

which by definition is the singular homology group of the pair X, A.
It is easily verified that the resulting isomorphism

H.(SX, 84; G) - H,(X, A)

commutes with mappings and boundary homomorphisms. (Compare pp.
100 -101 of [1] for precise statements.) This completes the proof of the
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Uniqueness Theorem.

The corresponding theorem for cohomology groups can be proved in
the same way.
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CHARACTERS AND COHOMOLOGY OF FINITE GROUPS

M. F. Atiyah

§ 3. Inverse limits and completions.
Let M be a filtered abelian group, i.e. we have a sequence of subgroups:
M=MpoMp>...o0M,>...

This filtration gives M the structure of a topological group, the subgroups M, being
taken as a fundamental systein of neighbourhoods of 0 in M. We denote by M (or M")
the completion of M for this topology, i.e.

(3.1) M=1lim M/M,, (inverse limit).

We remark that the topology ofT\'I is not necessarily Hausdorff so that the natural
map M->M may have non-zero kernel. In fact we have:

(3.2) Ker (M—>M) = 61M,‘.

If {,A} is an inverse system of abelian groups (indexed by the non-negative
integers), the inverse limit A=1lim ,A has a natural filtration defined by (*)
A, =Ker{A—>,_,A}
Moreover A is complete for the topology defined by this filtration, i.e. A=2A. Thus
an inverse limit is in a natural way a complete filtered group. This applies in particular
to the group M given by (3.1). It is easy to see that the subgroups of the filtration
may be identified with the completions M, of the subgroups M, (for the induced
topology).
If M is a finite group then the filtration necessarily terminates, i.e. M,=M,
for all n>n,, and so MEM/M,". We record this for future reference.
Lemma (3.3). — If M is a finite filtered group M—M is an epimorphism.
We also state the following elementary properties of inverse limits, the verifications
being trivial.
Lemma (3.4). — Let{, ;A}be an inverse system indexed by pairs (a, ) eIx J, where 1, ]
are two directed sets. Then
lim lim , A=lim , (A=l lim , A
« B (@8] 8 T«
Lemma (3.5). — If o—>{,A}>{,B}->{,C}>o0 is an exact sequence of inverse systems
(o belonging to some directed set), then
o-lim ,A—lim B—lim ,C
is exact. - - o
In order for lim to be right exact we need a condition. Following Dieudonné-
Grothendieck [8] we adopt the following definition. An inverse system {,A} is said
to satisfy the Mittag-Leffler condition (ML) if, for each a, there exists 8> « such that
Im(,A> ,A)=Im(, A~ A)

(') Weput ,A- o030 that A,= A
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for all y>B. Moreover we shall assume from now on that all inverse systems ire over
countable directed sets. The following properties of (ML) are proved in |8, chapter o
(complements)].

(3.6) If {_A}>{,B}>o0 is exact and { A} satisfies (ML), so does {,B}.

(3.7) If o>{ A}>{.B}>{.C}—0 is exact, and if { A} and { C} each satisfy (ML.),
5o does { B}

(3.8) If o>{,A}>{,B}>{,C}>0 is exact, and if { A} satisfies (ML), then

o—lim , A-lim B-lim C—o

is exact. - - -

(3-9) Let {,C"} be an inverse system of complexes, with differentials of degree 1. Suppose
that, for each p, {,C*} and {H?(,C")} satisfy (ML), then lim H?(,C") =H"(lim G-

Remark. — In [8] the differentials in (3.9) are supposed to have degree 1, but
this does not affect the argument.
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EXTRACT FROM THESIS

D. W. Anderson

The first thing which we must do to formulate our theorem
is to describe the topology on KU*(BG). If we let k* stand for
any cohomology theory defined on the category of CW-complexes,
and if X is a CW-complex with n-skeleton x" , k*(X) can be
given the structure of a topological group if we take as the funda-
mental system of neighbourhoods of zero the groups, kernel
(k*(X) ~ k"‘(Xn )). The resulting topology will be called the inverse
limit topology on k*(X). We denote the inverse limit functor by
1im°. There is one non-zero right derived functor lim' when we
work in the category of abelian groups, and 1im° is left exact.
The relationship between k*(X) and limo(k"‘(Xn )) has been des-
cribed by Milnor for a class of theories k* which satisfy one more
axiom than the Eilenberg-Steenrod axioms. This axiom is called
'additivity' by Milnor, and says that when applied to topological
sums, k* gives the direct product of the k*'s of the individual
components. Any representable theory clearly satisfies this
condition, and any additive theory is representable [4]. Milnor's
result [6] states that for an additive theory k* and a CW-complex
X, there is for all p an exact sequence:

0 - 1im® (P 1(x") - 1PX) - 1im & PEY) - 0.

For a representable theory, of course, the surjectiveness of the
map k*(X) - limo(k*(Xn)) follows from the homotopy extension
property for CW-pairs. The following is implicit in §3, 4 [2]:
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Proposition 4.1. A sufficient condition that liml(k‘(Xn)) =0
is that in the spectral sequence [5] which connects H*(X; k*(point))

with k*(X), for all (p, q) there exists an r such that Eg'qf
2P a ]
S

If both H*(X; Z) and k*(point) are of finite type, it is
clear from this proposition that a sufficient condition that
lim' (k*(X™) = 0 is that every element of Elz”q = HP(X; K¥(point))
have some multiple which is an infinite cycle in the spectral
sequence. If k* = KU*, we know from [3] that this will happen
if chp:KU*(X) ®Q —~ Hp(X; Q) is onto for every p. If we take X
to be the classifying space of a compact Lie group, G, then
chP:RU(G) ® Q —~ Hp(BG; Q) is surjective for all p (see [3] for
the case when G is connected, and use this to conclude the same
result for any compact Lie group). Thus, we see that for a compact
Lie growp G, KU*(Bg) = limo(KU*(Bg)).
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The scope of the next paper, by Dyer, is indicated in §12.
1t offers a good introduction to a central topic of interest in this
field. It assumes a fair familiarity with the usual machinery of

algebraic topology.
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Matematisk Institut, Aarhus Universitet

RELATIONS BETWEEN COHOMOLOGY THEORIES
T

Eldon Dyer

Colloquium on Algebraic Topology, 1-10 August 1962

This lecture is principally an exposition of a folk theorem of
a Riemann-Roch type for general cohomology theories known to
Adams, Atiyah, Hirzebruch... .

First we need to make a few remarks about Poincare
duality in such theories. We could follow the approach of G. W.
Whitehead in [3], but more convenient for our purposes is Dold's
isomorphism theorem for h-orientable bundles. To avoid a dis-
cussion of micro-bundles, we limit our discussion here to differen-

tiable manifolds.

Poincaré duality

Let h* be a multiplicative cohomology theory in the sense
of Dold. Let m:E — B be a vector bundle A (B =~ connected, finite
CW complex). Let E' be the complement of the 0-section and
i:(F, F') - (E, E') be the inclusion of a fibre.

Theorem (Dold). If thereis a class u € hn(E, E') such
that i*u generates h*(F, F') = h*(Sn, pt.) as h*(pt.)-module,

then the homomorphism

Tt The author is an A. P. Sloan Foundation Fellow.
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i+n

¢:n'(B) ~ h'*(E, EY)

defined by ¢(&) = #*(&) U u is an isomorphism.

Of course, (E, E') has the homotopy type of (T(}), pt.),
T(A) the Thom space of the bundle A.

Let M be a closed, differentiable manifold and v a normal
bundle of M. If Dold's isomorphism holds for this bundle, i.e.,
if a suitable class uy € h*(T(v), pt.) exists, we may say M is
h*-orientable and satisfies Poincaré duality in the h*-theory. In
fact, Dold's isomorphism may be regarded as the statement of
Poincare duality in light of the Milnor-Spanier result that T(v) is
S-dual to M/g. (Note corollaries 7. 8 and 7. 10 of Whitehead [3].)
Let % denote the class of h*-oriented manifolds.

We may regard M as the solid unit tube in », M as its
boundary and (T(v), pt.) as (M, M). Then h*(M, I&I) is an
h*(M)-module and the action

h*(M) ® h*(M, M) — h*(M, M), or equivalently
h*(M) ® h*(T(v), pt.) - h*(T(v), pt.)

is the action of h*(M) on h*(M, f/l) through #* used in Dold's
theorem. We shall regard this action as a cap-product.
Let £:X - Y be a continuous map of manifolds in%. This

induces a dual map ‘fSA{ -~ 5(, where i[ and X are S-duals as given

by Thom-spaces of normal bundles. We have a diagram

h*(X) ® h*(X) - h*(X)

If* 1?* lf*
h*(Y) ® h*(Y) - h*(Y) ,
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in which
fe(f(y) Ux) = y U T*(X) .
This is the usual formula for cap-products.
Also, there is an 'inverse-homomorphism' f, :h*(X) — h*(Y)

given by the composition

1 ¢!

h*(X) 2 A*X) - R*(¥) = hx(Y) .
We notice that f! is functorial and that
W U=y UE®,
again as in the usual case.

Riemann-Roch Theorem. Let h* and k* be multiplicative

cohomology theories. Let 7:h* —k* be a natural transformation
such that

(1) for each X, 7:h*(X) — k*(X) is multiplicative, and

(2) if ac hl(sl, pt.) aid 8 ekl(Sl, pt.) are suspensions of
the units in h°(s0, pt.) and k°(s0, pt.), then 7(a) = 6.

Such a transformation we shall call multiplicative.

For X € °n 9% 1et 7(X) € k*(X) be the image of

1 € h*(X) under the composition
-1

¢h .~ T " ¢k
h*X) - *X) - kB*X) ~ k*X); i.e.,
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Proposition. For x € h*(X), 7(x) u 7(X) = ¢1;1 7 ¢ () .

Proof. Let ¢ (1)=U, and ¢ (1) =U,. Then
h k

h k

(T U g o, (1) =T T uTE 6 T (1) UL

It

T nﬁ(x) urT ¢h(1)

=T ¢h(X) .

Theorem. Let X and Y liein 5#Nn. 9%, 7:h* —k* be a

multiplicative transformation of cohomology theories, and

f:X - Y be a continuous map. Then for x € h*(X),

£(7(x) U (%) = 76, G0) U 7(Y) .

Proot. ¢, 1[4, (7(x) U T(X))] = ;1 B 7 ¢, (®)
= ¢l;1 TE* ¢h(x)
= b T8y 1 9,00)

= 7[¢; 1 9, @] U (V)

il

T f?(x) u 7(Y) .

Examples. We give two examples taken from papers of
Atiyah and Hirzebruch, [1] and [2].

(A) Let h*( ) =k*( ) = H*( ; Zp) and let 2 be a cohomology
automorphism (multiplicative; identity on Hl(Sl, pt.)). In (1]
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Atiyah and Hirzebruch have defined Wu(x, X) to be the image of 1
in the composition
-1 -1

¢ A . X
H*(X) ~ H*(X') - H*X) - H*X) - H*X),

where X' is the Thom space of the tangent bundle 7 of X. For
A we have A(X) = Wu(A'l, X). The theorem then states that for
£X-Y,

£, (\x) v Wu(" (X)) = A £, (%) U wu(r~!

, Y).
In this case f, is the ordinary inverse homomorphism. This is
Theorem 3. 2 of [1].

An illustration explaining the notation Wu( , X) is given in
[1]. Let p=2 and A’ ' =8q=5¢"+8q* +.... Take Y tobea
point. Then f, (x) = x[x] and the equation becomes

O(x) U Wu(r"?

, XN[X] = x[X].
Wu(Sq, X) = Sq_lw, where W is the total Stiefel- Whitney class
of X. Let U= Sq_lx and V= Sq'lw. The above equation becomes

(UuV) [X]=(sqU) [X],

which is the formula of Wu characterizing W.
Atiyah and Hirzebruch give other applications of this theorem
and a computation of A(X) for A = Sq_* or P! interms of Todd

polynomials and a
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(B) As a second example we let h* = Ke, k* = H*( ;Q) and
7 = ch, the Chern character.

An orientable manifold X is a Cl-manifold if for some
imbedding of X in a sphere, there is a class C1 € HZ(X; Z) whose
mod 2 reduction is the second Stiefel- Whitney class of the normal
bundle v of X in the imbedding. It follows by representation
theory (Sec. 5.3 and 5. 4 of [2]) that for such a manifold there is an

element

8(1) € K&(X") such that

c1/2A -1 ¢, /2.
ch ¢(1) = ¢(e = a() ) =¢e = aX).

As the first non-zero term of ch is 1 in the dimension of the
fibre, ¢(1) pulls back correctly to show a Cl-manifold is orien-

table in the Ke-theory. Thus we have the

Theorem. Let f:X ~ Y be a continuous map of C, -mani-

folds. There is a homomorphism

f: KE(X) - KE(Y)

such that for x € KE(X) ,

c. (X)/2 . c (Y)/2 a

ff* (ch@®) ue a(X) = ch(f, @) ve a (Y.

f,is functorial for maps of Cl-ma.nifolds and

LER@ ux) =y uf &) .
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This theorem has had several interesting applications in

stable homotopy theory and in differential topology.
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19,20,21&22

The next paper, by Atiyah and Hirzebruch, is the foundation
paper on K-theory. It requires no more prerequisites than may be
expected at this stage, but the writing may be found condensed in
places. The following exposition, by Hirzebruch, can be recom-
mended for its clarity. The next note, by myself, is merely a
summary of results which were later published in full. For all
these three papers (but especially the last) the reader can consult
Husemoller for further details; or see Atiyah.

The fourth extract in this group is intended to give an idea
of one particular application of K-theory. The prerequisite is a

certain sympathy for homotopy-theory and homological algebra.

196



19

VECTOR BUNDLES AND HOMOGENEOUS SPACES

BY
M. F. ATIYAH AND F. HIRZEBRUCH

Dedicated to Professor Marston Morse

Introduction. In [1] we introduced for a space X the “ring of complex
vector bundles” K(X). The Bott periodicity of the infinite unitary group
{8; 9; 10] implied that X satisfied the “Kiinneth formula

KX X 8) >~ K(X) @ K(S"

which was fundamental for the proof of the differentiable Riemann-Roch theo-
rems [1; 16].

Using the Bott periodicity we construct in §1 a “periodic cohomology theory’’:
For every integer n, the abelian group K™(X) is defined, K*(X) is K(X) and
K***(X) is isomorphic with K*(X), the group K*(X) is the kernel of the homo-
morphism K*(X X S§') — K°(X) induced from the embedding X — X X S'.
This cohomology theory satisfies all the axioms of Eilenberg-Steenrod [14]
except the ‘“‘dimension axiom.” For the space consisting of a single point,
K" is infinite cyclic for even n and vanishes for odd n. The axioms without
the dimension axiom do not characterize the theory, even if the values of K*
are given for a point. There is a spectral sequence relating the ordinary co-
homology theory with our periodic theory (§2).

In §§3-5 we try to get information on K® and K* for classifying spaces and
certain homogeneous spaces. An important tool is the differentiable Riemann-
Roch theorem which we recall in the beginning of §3. The final goal would
be to answer all those questions for the K-theory on homogeneous spaces which
for the ordinary cohomology theory bave been treated so successfully by A.
Borel (see for example [3]). We can give only partial results in this direction.
The new cohomology theory can be applied to various topological questions
and may give better results than the ordinary cobomology theory, even if
the latter one is enriched by cobomology operations (see [2] and M. F. Atiyah
and J. A. Todd, On complez Stiefel manifolds, to appear in Proc. Cambridge
Philos. Soc.). This justifies the new theory.

In spite of its length, the present paper is by no means a final exposition.
The proofs are often sketchy and the definitions and results could be generalized
in certain cases. For example, using real vector bundles and the Bott periodicity
of the infinite orthogonal group, we can define a periodic cohomology theory
with period 8. This is not more difficult than in the unitary case. Furthermore,
the definition of K(X) in 1.1 can be given for any topological space. For con-
venience, we have restricted the theory to the special class ¥ (see 1.1). We
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have then the homotopy classification theorem (1.3)

( K(X)=[X,Z X By), Xe®).

For this actually ¥ could be chosen much larger. But in general (1) would
be wrong. The restriction to ¥ simplifies the presentation of certain conse-
quences drawn from the spectral sequence. For any topological space, we
can take the right side of (1) as a definition of a functor k(X). If Z X By
is endowed with a natural structure of a commutative ring (up to homotopy),
then k(X) has a natural (commutative) ring structure for any space X and the
rings K(X) and k(X) are isomorphic if X ¢ . Such & “ring” structure on
Z X By has been defined by Milnor (not published). In view of Milnor’s
construction it would perhaps be more natural to study the functor k(X),
but since Milnor’s result is not yet at our disposal we have studied K(X) where
sum and product structure is automatically given by the Whitney sum and
the tensor product of vector bundles.

For the classifying spaces B; we have defined X(B;) as an inverse limit
indicating by the curly letter that we mean neither K(Bg) nor k(Bg). We
conjecture that X(B¢) is isomorphic to k(Bg) for any compact Lie group G.
But we shall deal with this question elsewhere. We prove for a compact con-
nected Lie group G that X(B,) is isomorphic with the completed representation
ring R(G) (see 4.8).

1. A cohomology theory derived from the unitary groups.

1.1. Let % be the class of those spaces which can carry the structure of a
finite CW-complex. For X ¢ % we have defined in {1] an abelian group K(X).
There we gave the definition only for a connected X, but we may define K(X)
in general as the direct sum of the groups K(X;) where the X, are the con-
nectedness components of X. For the sake of completeness we recall the defi-
nition of K(X) and give it directly for a space X ¢ % not necessarily connected.

We adopt the usual definition of a complex vector bundle over X except
that we allow the bundle to have fibres of different dimensions over the various
connectedness components of X. We can now verbally repeat the definition
of [1]:

Let F(X) be the free abelian group generated by the set of all isomorphism
classes of complex vector bundles over X. To every triple t = (¢, ¥, ¥') of
vector bundles with ¢ =2 ¢ @ ¢’ we assign the element [{] = [¢] — {¢'] — [£]
of F(X), where [t] denotes the isomorphism class of §&. The group K(X) is
defined as the quotient of F(X) by the subgroup generated by all the elements
of the form [f].

The tensor product of vector bundles defines a commutative ring structure
in K(X); the unit 1 is given by the trivial bundle of dimension 1.

K is a contravariant functor: for a continuous map f : ¥ —» X (¥, X ¢ %)
we have the natural ring homomorphism ' : K(X) — K(Y) induced by the
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lifting of bundles under . We denote it by ' to distinguish it from the analogous
homomorphism f* in ordinary eohomology theory.

1.2. Let 9 be the class whose objects are the pairs (X, z,) with X ¢ ¥ and
Zo ¢ X. Usually we shall write an object of ¥ simply by indicating the space X.
Very often the base point z, of X is naturally given by the context. For X ¢
we define the reduced group K(X) as follows: the ring K({z.}) is canonically
isomorphic with Z (the ring of integers). The imbedding % : {z,} — X induces
the ring homomorphism

i 1 K(X) = K({z)) = 2.

We define R(X) to be the kernel of ¢'. It is an ideal of K(X). Whenever a
symbol like K(X) occurs it is to be understood that X is a space with base
point, i.e., an object of .

We now consider the class 8 consisting of pairs (X, ¥) where X can be given
the structure of a finite CW-complex in such a way that ¥ becomes a subcomplex.
For (X, Y) ¢ B we define

K(X,Y) = R(X/Y).
Here X/Y is obtained from X by collapsing Y to a point which becomes then
the base point of X/Y. By [19], X/Y ¢ %. Note that B(X) = K(X, z,) for
Xe¥ If Yisempty (Y = &), then X/ = X* (where X" is the topological
sum of X with an extra point which becomes base point of X*) and K(X, &) =
R(X") = K(X).

For X, ¥ ¢ ¥ the objects X V Y and X A Y of ¥ are defined. (In the liter-
ature, X A Y is also denoted by X # Y). X Vv Y is obtained from the topo-
logical sum of X and Y by identifying the base point of X with the base point
of Y to one point which becomes the base point of X V ¥. Thespace X A Y
is X X Y with the union of the axis z, X ¥ and X X y, collapsed to a point
which becomes the base point of X A ¥. e have the natural maps

XVY>2XXY—-SXAY
and may write
(n XAY=XXY/XVY.

The operations V and A are associative and commutative and A is distributive
over V. This means, for example, that there is a canonical homeomorphism
between X A Yand Y A X.

If S" ¢ ¥ is the standard n-sphere with base point, we write

@ SX)=8 AKX, (X e ).
This is the nth suspension of X. Since

S§=8AS8A---AS (ntimes)
it follows that S"(X) is the n times iterated suspension of X.
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DeriNiTiON. For any infeger n 2 0 we put K™*(X, Y) = R(S"(X/Y)),
(X, Y) e ®). For X ¢ ¥ we put K(X) = K-(X, &) = R(S(X")). For
X ¢ & with base point zo we put K"(X) = KX, 2,) = R(S"(X)).

For n = 0 we have the groups already defined:

K'X,Y) = KX, ), K'(X)=K(X), K(X) = KX).

Of course, the K" are also contravariant functors.

1.3. We write [4, B] for the set of homotopy classes of maps of the space
A into the space B and correspondingly [4, U; B, V] for the homotopy classes
of maps of the pair (4, U) into the pair (B, V). If the spaces A and B have
base points, then we write [A, B], for the set of homotopy classes of maps
preserving base points.

Let By be the classifying space of the infinite unitary group (10] and Z X By
the cartesian product of it with the group of integers (Z having the discrete
topology). In Z X By we choose a base point lying in 0 X By. The classification
theorem for unitary bundles [18, §19.3] gives rise to the following natural bi-
jective maps (compare also [16, §1.7, 2.1]):

K(X) = [X,Z X By, X.%).
K(X) = [Xr ZX BU]O) (X' i)-
K™(X, Y) = [S(X/Y), Z X B, (X, Y)e®),

= [X/Y, @(Z X B,
=~ [X, Y; @(Z X By), point],
=~ [X, Y; @*'U, point], n>0.

We recall that Z X By is weakly homotopy equivalent to an H-space, namely
to QU (Bott, see {8]). Thus all the above sets of homotopy classes are endowed
with a8 natural group structure. The above bijections are in fact all group
isomorphisms. Since U is weakly homotopy equivalent to 2(Z X By), the
space 9'(Z X By) is weakly homotopy equivalent to Z X By and we have
an isomorphism

® KX, V)= K™(X, V), na0.

We shall give later an explicit description of an isomorphism between these
two groups.
If z, denotes the space consisting of a single point, then

K™(xo) = ».(Z X By), na0,
and thus [9)
K™z)=Z for n even and K "(z,) = 0 for n odd.
1.4. ProrosiTioN. If (X, Y) ¢ B we have exact sequences
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@B KO BKTEX,Y)-K(X)
- K™(Y) = --- = K'(X, Y) = K(X) = K°(Y),
() o R-V(Y) S KX, ¥) = R™(X)
—K7(Y) > --- = KX, Y) = R(X) — R(Y).
For (ii) we assume X, Y e A withzo = yoe Y.

Proor. We use the paper of Puppe [17]). If ¥ and X are arbitrary spaces
with base point and f : ¥ — X a map preserving base points, then there is
a sequence of spaces and maps (with base points)

YLXHBC,BSY>8X—-S8C,—-8Y—>8X—>-.--

such that the following is true: if V is any space with base point, then the
functor [ , V], gives an exact sequence of sets. Here we note that exactness
is a property of sets with preferred elements—the group structure is irrelevant.
The preferred element is always given by the constant map onto the base point.
We recall the construction of C,. First we take the cone

CY =Y XI/Y X1Uy X1

Then we take the topological sum CY + X in which we identify (y, 0) ¢ CY
with f(y) foreach y ¢ Y. The space C, contains X as subspace. C,/X is (canoni-
cally homeomorphic with) the first suspension of Y. This gives rise to the
maps ¥ —' X =" C, -9 §'Y. All the other maps in Puppe’s sequence are
suspensions of these. If Y is a subspace of X and f the injection, then we have
a natural homeomorphism X/Y == C,/CY. If (X, Y) belongs to 8 then it
satisfies the homotopy extension condition and according to Puppe the map
C, — C,/CY followed by the above mentioned homeomorphism is a homotopy
equivalence h. The composition h o Pf is the natural projection X — X/Y.
Taking this into account Puppe’s theorem applied to V = Z X By gives the
exact sequence (ii) and all homomorphisms in this sequence are canonically
defined by Puppe’s maps. K™ (X, Y) —» K™(X) is induced from X — X/Y.
The sequence (i) is obtained by replacing in (ii) ¥ and X by ¥* and X" re-
spectively.

ReEMARk. If Y = [z,] then the sequence (i) breaks off in split exact sequences

0— K*(X) =» K™(X) = K™"(20) — O.
Hence

K™(X) = K(X) @ ~.(Z X By, (see 1.3).

The exact sequence (i) is obtained from (ii) by adding to K™*(X) and also to
R™(Y) the direct summand x.(Z X By).

1.5. We have mentioned in 1.1 that K(X) = K°(X) is a commutative ring.
We wish to define more generally products also involving the groups X™" (n 2 0).
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Suppose X, Y ¢ % Then X VY =X Xy Uz X Y isasubspaceof X X Y.
We apply 1.4 (ii) to the pair (X X ¥, X VvV Y). The exact sequence breaks
off in this case into split exact sequences.

€] 0 R XAY)SR'XXY)SKEXVY)—=0 G0,
and we have a canonical decomposition
® R"X X V)=RX A YD KRX)® K™Y).

For the proof of (4) we observe that K™*(X X Y) — K™%(X V Y) is surjective
and that this homomorphism may be regarded as the projection onto a direct
summand. For this we make use of

R™XVY)=RSXVY)=FK(ESXVSY) = RSX) ®KRESY)
= k(X)) @ K™(Y).

We have the following natural group homomorphisms which are all induced
by the tensor product of vector bundles

(6) KX)QK(Y) =KX X ), (X, Ye®),
@ RX)QRY)-RKX A Y), (X, Y 9),
® KX, X)QKY,Y)-KXXY,XoXYUXXY,,

for (X,X, and (Y, Yo)eS3.

It is clear how (6) is defined. If a ¢ K(X) and b ¢ K(Y), then the product is
in the kernel of K(X X ¥Y) = K(X X y, \J x, X ¥Y). By (4) and (5) the product
is well defined as element of K(X A ¥), (n = 0). If we replace in (7) X by
X/X, and Y by Y/¥, we get the definition of (8). More generally we have
a group homomorphism

9 K"XXJRQK™(Y,Y)—-K""XXY,XeXYUXXY),
for (X,Xo),(Y,Y)e®B and m 20,0 2 0.
We get this from (7) and the fact that
S™(X/Xo) A SN Y/Y) = 8*"(X/X, A Y/Yy)
=S""X X YV/Xe X YUX X Y.

The equality sign means that there is a natural homeomorphism between these
spaces. If one uses the natural identification of X X Y with ¥ X X, one gets
from (9) a product

©) K(Y,Y)QK™X,X)—K "X XY, XeXYUXXY,).

LemMa. Iface KX, X,) and b ¢ K™ (Y, Y,), then ab = (—1)™ba where
ab s the smage of a X b under (9) and ba the image of b X a under (9).
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ProoF. The sign comes from the use of the various “natural identifications’
between different spaces. S™ A (X/X,) A 8" A (Y/Y,) and S* A (Y/Y,) A
S™ A (X/X,) are identified just by the permutation. However, for the defi-
nition of (9) we employ the identification

Ana i STA S — 87"

which comes from a map 8™ X S" — S™" of degree +1 (all spheres and also
the cartesian product in this order have the standard orientations). If 8 is
the permutation S™ X S* — S X S, then a... o 8 0 a7', has degree (—1)™.
This shows that ab and ba correspond to elements of

CG=[S""XXY/Xe XYUX XY, Z XBuy

which are related with each other by a map of S™*" onto itself of degree (—1)™".
Since the group structure of G can also be defined by the suspension coordinate
like a homotopy group, the lemma follows.

1.6. TUsing the diagonal map as in the definition of the cup product we get:

PropositioN. Let X ¢ A. Then ) ..o K™(X) is a graded anfi-commulative
ring. Let (X, Y) ¢ B. Then there is a “graded homomorphism”

(§ K™(X) ® (§ K™X,Y)— %K"(X, v,

making 2.,0 K-~(X, Y) a graded module over _.,o K~"(X).

The products have functorial properties. For example, if (X, Xo) =’ (X', X))
and (Y, Y,) = (¥Y’, Y}) are maps with the pairs all belonging to B, then we
have the commutative diagram

KX X)QK*"(Y,Y)-K"™""X'X Y, X{ X YUX' XY}
(10 lred lox o
K"X,X)Q@K™(Y,Y) » K™"XXY, X, XYUXXY,).

Furthermore, for f : Y — X, the induced homomorphism §' : 3 .0 K™™(X) —
Y mzo K~"(Y) is a ring homomorphism, etc.

1.7, The Bott isomorphism. The existence of the Bott isomorphism (see 1.3
(3)) is the central and deep point of the cohomology theory we are developing.
We give now the explicit description of this isomorphism.

Let x, be the space consisting of a single point. Then (1.3) K~*(z,) is infinite
cyclic. By definition K~*(z,) = K(S?). Let 5 be the complex line bundle
over 8’ whose first Chern class equals the canonical generator of H*(S*, Z).
Then 7 represents an element (5] £ K(S%) and [9] — 1 is a generator of K(§?) =
K~*(z,) which we denote by g. If a ¢ K-"(X, X,), then ag ¢t K~™**(X, X,).
Here we use 1.5 (9) with ¥ = z, and Y, empty.

TeEOREM. The map a — ag 18 an isomorphism of K ™(X, X,) onio
K~"**(X, X,). In particular, Y ..o K™"(2,) is the polynomial ring Z[g).
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For a proof of this central theorem we refer to [10). For any (X, X,) ¢ B
the graded group > ... K™*(X, X,) i8 & module over Zlg]. Multiplication
with ¢* gives an isomorphism of K™*(X, X,) onto K~ “**(X, X,). This holds
in particular if X, is empty or reduces to the base point, i.e., D nz0o K (X)
and Y ..o R™(X) are both modules over Z[g]. Let 8 denote the multiplication
by g. The next lemma follows from 1.6 (10).

Lemma. If (X, Y) and (X', V') belong to B and if f : (X, Y) - (X', V)
is a continuous map, then '8 = f' where f' : K™(X', Y') - K™(X, 1), (n = 0),
13 the $nduced homomorphism, in other words: f' is a homomorphism of Z{g}-modules.

Lemma. If (X, Y) ¢ B, then B gives a homomorphism of exact sequences (1.4 (ii)),
t.e., we have the commutative diagram (n = 0)

RN HE™X, 1) - R0 - R
B B B lﬁ
K‘—(ubl)(y) i) K-(v»ﬂ(X, y') — K—(-o!)(x) —_ K—(-#?)(Y).
The corresponding statement holds for the exact sequence (1.4 (i)).

Proor. This follows from the preceding lemma. We take into account that
the homomorphism § is also induced by a map, namely by C, — S'Y.

1.8. The group K™**(X, Y) can be identified with K*(X, Y)and K~ ***V(X, Y)
with X7'(X) by the Bott isomorphisms:

£ KX, V) > K™(X, V),
g :K'(X,Y)- K" (X, ).
This allows us to define K*(X, Y) for any integer n by
K(X,Y)=KX,Y) if n iseven,
KX, Y)=K'X,Y) if n isodd.

The groups K*(X, 1) satisfy the usual axioms of a cohomology theory [14]
(in the category B with all continuous maps of one pair into another one being
admissable) excep. that K™(z,) does not vanish for n = 0 (1.3). The existence
of an exact sequence

(1) -+ KY(¥) 5 KX, ¥) = K(X) = K(Y) —eoo(— <n < =)

follows from 1.4 and the second lemma of 1.7.
Let (X, Y, Z) be a triple with X D Y D Z and all the pairs (X, 1), (X, Z),
(Y, Z) belonging to 8. Then we have an exact sequence

% > K(Y,2) 5KX,Y) > KX, 2) > K*(Y,2) >,
(—Q <n< Q)v
where the 5 of (11*) is the composition K*(¥, Z) —» K*(Y) —' K**(X, V).

204



(19)

The exactness of (11*) would follow from 1.4(ii) applied to the pair (X/Z, Y/Z)
if this belonged to 8. But (11*) is also a consequence of the cohomology axioms.
(Excision-, homotopy-, and dimension axioms are not needed for this formal
deduction of (11*); compare [14, Chapter I, §10].)

1.9. In 1.8 we have completed the construction of a cohomology theory sat-
isfying all axioms except the “dimension axiom.” Since these ‘‘cohomology
groups” are periodic (K*(X, ¥) = K***(X, Y)) it is convenient to define

KX, Y) =KX, V)D KX, Y), X,Y)e8,

and similarly for K*(X) and K*(X). K*(X) is then an anticommutative
ring, graded by Z,, i.e., K°(X) is a subring and

K'X)-K'(X) CK'(X), K'(X)-K'(X) C K(X).

Moreover K*(X, Y) is a Z,-graded module over K*(X). Since 3 respects the
periodicity, we have the exact triangle

KYY) 5 K¥(X, V)
12 LN Vg
K*(X)

which resolves in an exact hexagon

K'(X,Y) - K'(X)
v N
K°(Y).\ .?K'(Y)
K'X)— K%X, Y)

and which has, so to speak, the exact sequence (11) as ‘“‘universal covering.”
For a triple X, Y, Z (see 1.8) we have the exact triangle

K«Y,Z) » K*X, Y)
(12%) N v
K«X,2)
and the corresponding hexagon.

1.10. The Chern character. For each complex vector bundle ¢ over the space
X ¢ ¥ the Chern character ch(¢) is defined as an element of the rational co-
homology ring H*(X, @), (5, §9.1). If H*(X, Q) denotes the direct sum of
the even dimensional cohomology groups (which is & commutative subring of
H*(X, Q)), then ch(¢) ¢ H**(X, Q). The definition of ch(¢) uses only the total
Chern class ¢(f). The classes ch(f) and c¢(¢), both regarded as elements of
H*(X, Q), determine each other. The Chern character induces a ring homo-
morphism [15, §12.1 (5)}

(13) ch:K(X) = K(X) -H"(X,Q C H*X, Q)
with
ch(R(X)) C B%X, Q) = Kemel (H*(X, Q) — H*({z}, Q).
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We are now going to define a group homomorphism
(149 ch:K"X, V)= H*X,Y;Q, (X,Y)e®9,ng0).
By definition, K™*(X, ¥) = K(S*(X/Y)). We bave the suspension isomor-
phism
a: B*(4, Q) — A*(S¥(4), Q), Ael,

which raises degrees by n and is defined by tensoring a ¢ H*(4, Q) (from the
left) with the canonical generator of H*(S", Z). If § ¢ K™(X, Y), let ¢ be
the “corresponding element” of R(S*(X/Y)). Then ch(t') « A*(S*(X/Y), Q)
and (¢") ' ch(¥') e A*(X/Y; Q). We have the canonical isomorphism

a :H*(X/Yy Q) — H*(X: Y; Q
and we define

ch@®) = al(a)'ch(¥).

In 1.7 and 1.8 we described the Bott isomorphism. Since ch([n] — 1) is the
canonical generator of H*(S®, Z) and since ch preserves products, it follows
easily, that ch(8(¢)) = ch(¢) for £ e K™"(X, Y). Therefore we can define ch(¢)
forte K*(X, Y), n any integer. Using the notation of 1.9 we have now defined
the Chern character as 8 homomorphism

ch: K¥X, Y) - H*X, Y; Q).

ch maps K°(X, ) into H*(X, ¥; Q) and K'(X, Y) into H**(X, ¥; Q) which
denotes the direct sum of the odd-dimensional cohomology groups. The fol-
lowing theorem is easy to check.

TeHEOREM. The Chern character s a ‘“‘natural transformation” of the “co-
homology theory” described in 1.9 inlo the ordinary cohomology theory with rational
coeflicients for which one only considers the Zy,grading H* = H** @ H*. In
particular, ch preserves products, commutes with maps, ch o f* = f* o ch, and
one has commutative diagrams

K(Y) 5 K'(X, V) K'(Y) KX, Y)
ch ch ch ch
BY(Y,Q S H"X,Y;Q), HYY,Q->H"X,Y;Q.

The commutativity of these diagrams can be deduced from the fact that
the & of both theories is induced from the map ¢, — S'Y (compare 1.4). One
has to be careful with the signs. We hope to have chosen the various definitions
such that commutativity (not only commutativity up to sign) holds in these
diagrams.

2. The spectral sequence. Let X be a finite simplicial complex. We shall
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establish a spectral sequence relating the integral cohomology ring of X with
K*(X).

2.1. Let X" be the n-skeleton of X. We use the K-theory defined in 1.8.
We filter K*(X) by defining

K}(X) = Kernel [K*(X) — KX(X*7)].

TueOREM. Let X be a finite simplicial complex. Let x, be the space consisiing
of a single point, so that K*(x,) = Z if q is even and K*(z,) = 0 if g 18 odd. There
exists a spectral sequence BV (r 2 1, — o < p, ¢ < «) with

(1) Bl = C(X, K'(z),

d, being the ordinary coboundary operator.

@ Ey' = H'(X, K'(z0)),

@ E3* = G,K"(X) = K3*Y(X)/K3L(X).

The differential d. : E* — E>*"*""*! vanishes for r eren since E2'* = 0 for all
odd values of g.

Proor. We use the method of [12, Chapter XV, §7] and define the graded
group
Hp, 9= X H@p 9= X KX ,X7), ¢2 P

—mlal® ~mn®

These H(p, q) satisfy the axiom (SP.1)-(SP.5) of [12, loc. cit.]. For axiom
(SP.4) see 1.8 (11%).

B = K0, X = LK™, 8,

where o} runs through all p-simplices. But ¢%/é% = S”. Therefore K***(¢?, 67) =
R>*(8”) = R*(8° = K*(z,). This proves (1). To get (2) one has to check
that d, is the ordinary coboundary operator.

2.2. REMARK. The preceding spectral sequence can be generalized to a
fibre bundle (¥, X, F) with projection » : ¥ — X. If this fibre bundle satisfies
certain conditions, then there is a spectral sequence with E7'* =2 C*(X, K*(F))
and E3* == H*(X, K°(F)) (local coefficients). Furthermore E%* =2 G, K***(Y)
with respect to a certain filtration of K***(Y). This spectral sequence specializes
to the one of the theorem for Y = X and = the identity.

2.3. The whole spectral sequence of 2.1 is compatible with the Bott periodicity.
This makes it possible to forget about the grading and to use the notation of 1.9.

TueoREM. Let X be a finite simplicial complex. Let K%(X) be the kernel of
K*(X) — K*(K*™"). There exists a spectral sequence E2(X), r = 1, with

EXX) = (X, 2),
EXX) = H'(X, 2),

EUX) = G,K*(X) = K3(X)/K3.(X).
The differentials d, vanish for even r.
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This spectral sequence could also be obtained directly by the method of
12, Chapter XV, §7] by putting H(p, 9) = K.(X'_l: X'-l)

ReMarg. It is easy to show (by the notion of 1-equivalence, [12, p. 336))
that the E?(X) together with the differentials d, are homotopy type invariants
of X forr = 2. Also K%(X) isa homotopy type invariant. It can be invariantly
defined as follows: an element £ of K*(X) belongs to K*(X) if and only if for
any finite simplicial complex ¥ of dimension £ ¢ — 1 and any continuous
map f : Y — X we have f't = 0. Thus the spectral sequence {E?(X), r = 2}
is well-defined for any space X of the homotopy type of a finite simplicial
complex. By a theorem of J. H. C. Whitehead [19, p. 239, Theorem 13] any
finite CW-complex is of the homotopy type of a finite simplicial complex.
Hence the spectral sequence {E}(X), r = 2} is well-defined for spaces of the
class ¥ (see 1.1).

The differentials d, are certain (higher order) cohomology operations.
d, : B} =~ H(X, Z) > E3** =~ H™*X, Z) is the Steenrod operation Sg’.

2.4. Let X be a finite simplicial complex. We propose to study the spectral
sequence of 2.3 in its relation with the Chern character. Let ‘E? be the spectral
sequence with

B} = C(X, Q), d, the ordinary coboundary operator,
'E? = H(X,Q) for 1 2, 'd, =0 for r2> 2.

This trivial spectral sequence is obtained by the method of [12, Chapter XV, §7]
by putting ‘H(r, s) = H*X'™', X"™'; Q) for ¢ = r. The spectral sequence
of 2.3 comes from H(r, s) = K*(X"™!, X"™"). The Chern character gives a
homomorphism

ch: H(r,8) — 'H(r, ),

and since ch is a natural transformation from the K*-theory to the rational
cohomology theory, we get a homomorphism ch from the spectral sequence
{E7} of 2.3 into the spectral sequence {'E?}. Using ch we can prove:

TeEOREM. Suppose X ¢ ¥ (see 1.1). The spectral sequence {E7(X)} collapses
(ie.,d. = 0forr = 2 and thus EYX) = EX(X)) if one of the following conditions
18 salisfied:

(i) H*(X, Z) has no torsion,
(ii) H*(X, Z) = 0 for all odd inlegers 7.

Proor. We may assume that X is a finite simplicial complex. ¢h : E] — ‘E?
is always injective for r = 1, since then it is just the coefficient homomorphism
C™(X,Z) —C(X,Q). Forr = 2itisthe homomorphism H*(X, Z) - H*(X, Q)
which is injective if X has no torsion. Since the ‘d, vanish for r 2 2 it follows
by induction on r that the d, also vanish for r 2 2 if E] — ‘Ej} is injective.
This proves the theorem under the assumption (i). If (ii) holds, then d,(r = 3,
odd) vanishes since it maps E?(X) in E?*"(X), and one of these groups is 0.
The d, (r even) vanish anyhow.
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THEOREM. Suppose X ¢ N (see 1.1). The spectral sequence {ET(X) @ Q}

eollapses (1.e.,d, @ Q = O0forr = 2).
ch: K*(X) ® Q - H¥(X, Q)

fs bijective and maps K°(X) @ Q onto H"(X, Q) and K'(X) ® Q onto H*(X, Q).

Proor. We may assume that X is a finite simplicial complex. The spectral
sequence {E?(X) & Q} is obtained by putting "H(p, ¢) = K*(X*, X" ® Q.
The Chern character gives a homomorphism of this spectral sequence into the
spectral sequence {’E?(X)] which is bijective for r = 1. This implies the
theorem (compare [12, Chapter XV, Theorem 3.2)).

CoroLLARY. Suppose X ¢ U (see 1.1). If K*(X) has no lorsion, then

ch: K*(X) — H*(X, Q)

8 injective.

2.5. The preceding results on the spectral sequence imply:

CoroLLaRY. Let X be a space belonging to % (see 1.1). Then K*(X) ¢3 addi-
tively a finilely generated abelian group. The rank of K*(X) equals the sum of
the even dimensional Betli numbers of X, whereas the rank of K*(X) is the sum
of the odd dimensional Belli numbers of X.

For any ¢ ¢ K*(X) let ch.(£) be the n-dimensional component of ck(t).
CoroLLARY. Suppose X ¢ % and that H*(X, Z) has no torsion. Then
(1) £ e K%(X) if and only if ch,(¢) = O for r < p, tn pariicular
ch: K¥X) = H*(X, Q)

18 tnjective and K*(X) 1s withoul torsion, t.c., free abelian.

(i) If £ « K3(X), then ch,(}) « H (X, Q) comes from an integral class which
18 untquely determined and equal lo the image of & in K%(X)/K2*,,(X) = H*(X, Z).
To every integral p-dimensional class x, there exists § ¢ K%(X) with ch,(f) = z,
t.e., ch(t) = z + higher terms.

(iii) Let A be a subgroup of K*(X). If for every x ¢« H*(X, Z), p 2 0, there
exisls £ ¢ A with ch(f) = x + higher terms, then A = K*(X).

2.6. So far we have not studied the behaviour of the spectral sequence (2.3)
with respect to the product structure of K*(X). We have only been able
to get a partial result which we summarize without proof in the following
theorem.

TaEOREM. Suppose X ¢ . We consider the speciral sequence E3(X) (r 2 2)
with the operalors d,. Let Z) be the kernel and B’ the image of d,. There exist
pairings ][, : EX(X) ® EXX) — E2**(X) with

@  EOQZX) - 2X),
Z(X) @ BI(X) - B and BN @ ZYX) — B (),
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and such that []... is induced from I], in virtue of (4). Moreover, 1, is the
cup-product and []. is the product in GK*(X) induced by the ring structure of
K*(X) for which

O K3(X)-K3(X) C K3,,(X).

We conjecture that d, is an anti-derivation. This would imply (4). We
shall only need (5) in the sequel. (5) admits a straightforward proof.

By (5) the mth power of an element of K%(X) belongs to K*(X). I m is
sufficiently large then K%(X) is zero, hence any element of K%(X) is nilpotent.
Clearly, ¢ ¢ K%(X) if and only if chy(¥) = 0. This special case of 2.5 (i) holds
for any X ¢ H. We conclude:

PROPOSITION. An element £ of K*(X) 18 ntlpolent if and only if chy(¢) = 0.
An element n of K*(X) s invertible if and only if cho(n) = *1.

Proor. It remains to show that n is invertible if cho(7) = 1. In this
case, =7 = 1 — & with chy() = 0 and thus £ nilpotent. Then n™' =
A+ E+E+ -+ NI =0

3. The differentiable Riemann-Roch theorem and some applications.

3.1. We recall the Riemann-Roch theorem given in [1] in a slightly more
general formulation. Let X, Y be compact oriented differentiable manifolds.
By the triangulation theorem of Cairns, X and Y belong to the class % of 1.1.
A continuous map f : ¥ — X will be called a c¢,-map if we are given an element
e.(f) ¢« H*(Y, Z) such that ¢,(f) = w(¥) — f*w,(X) mod 2 where w,(Y) and
w,(X) are the second Stiefel-Whitney classes of ¥ and X respectively
(wy ¢ H*( , Z3)). Asin [5; 1], if £ is a real vector bundle with finite-dimensional
base B; we define

%® = I (z./2)/@ioh (:/2)) ¢ H*(B;, Q)
where the Pontrjagin classes of ¢ are the elementary symmetric functions in
the z3. If ¢ is the tangent bundle of the differentiable manifold X we write
#(X) instead of %(¢).
TueoreM. Let Y and X be as before. Let f : Y — X be a ¢;-map. Then there
exists a homomorphism
g : K*(Y) - K~X)
such that
@ ch(gw)) - H(X) = 1,(ch(y)e” - K(Y)), ye K*(Y),
where J, i the Gysin homomorphism (Poincaré dual of the homology homomorphism).
(i) g maps K°(Y) into K°(X) and K'(Y) into K'(X) if dim ¥ = dim X
(mod 2).

g maps K°(Y) into K'(X) and K'(Y) into K°(X) #f dim ¥ # dim X
(mod 2).
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(iii) ¢ is related fo the homomorphism {' + K*(X) — K*(Y) by the formula
9('@-y) = z-9y), =zeK*X), yeK*(Y).
If we define A(f) = H(Y)-f*(A(X)™"), then (i) may be wrilten as
(i) ch(g(y)) = f,(ch(y) "7 -H().

This theorem is slightly more general than Theorem 1 of [1] which was formu-
lated for K°(X). Here we have stated it for K*(X) which makes the assumption
dim Y = dim X (mod 2) superfluous. The proof does not have to be changed
once one has developed the cohomology theory of §1. Moreover we assert
here the existence of the homomorphism g satisfying (iii). This brings no
additional difficulty. One just has to follow up the proof of Theorem 1 of [1)
(see also {16]). Something new would be involved if we tried to choose g in a
natural way (call it then f,) and prove certain functorial properties of it. We
shall take up this question in & more detailed exposition. Nevertheless we
permit ourselves to call the g of the theorem f,. But we are not allowed then
to use for Z —' ¥ —’ X the formula (f o /), = f, oJ.. (The composition of
two ¢,-maps is a ¢;-map in a natural way.) The formula (i) shows that ch(g(y))
is uniquely determined for a ¢,-map f. Therefore (2.4, 2.3), g = f, is given
without ambiguity if K*(X) or H*(X, Z) has no torsion.

1t follows easily from (i’) that

ch((f oN2) = ch(fi(4)) for ze K*(Z).
By (24, 2.5)

fofe=f{fr) if K¥X) or H*(X,Z) hasno torsion.

3.2. Let Y be a compact oriented differentiable manifold. It is called a
¢;-manifold if we are given an element ¢, (Y) ¢ H*(Y, Z) whose restriction mod 2
is w,(Y). For a c,-manifold Y the Todd genus T(Y) is defined. It is equal
to the value of the top-dimensional component of ¢*‘"”* - §((¥) on the funda-
mental cycle of Y. By definition, T'(Y) is a rational number. It is an integer
as follows by applying Theorem 3.1 to the map of ¥ onto a point. Compare
[1), see also [6]. If Y is almost-complex and ¢,(Y) the first Chern class, then
T(Y) is the usual Todd genus which is equal to the arithmetic genus if Y is
a projective algebraic manifold [16).

33. Lett = (E,, B, F,, ;) be a differentiable fibre bundle in the sense
of {5, §7.4). Assume that E;, B, F are compact oriented differentiable manifolds.
As in [6) we let £ be the bundle along the fibres. This is a real vector bundle
over E; whose second Stiefel-Whitney class w,(¢) equals w,(E;) — x*w,(B;).
Assume that » = ¢ is a ¢c,-map. Then ¢,(x) = w,({) mod 2. Ifs:F, — E,;
is the injection of a fibre in the total space then

i‘c,(r) = w,(F() mod 2.
Therefore if we put ¢,(F;) = *¢,(x), the manifold F; becomes a c,-manifold
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and we can speak of the Todd genus T(F,). Assume that £ is endowed with
a complex structure, i.e., we are given a complex vector bundle 5 over E; which
considered as real vector bundle is £. Then F, is almost complex in a natural
way. Furthermore = is a ¢,-map with ¢,(x) = ¢,(n). The Todd genus T'(F)
is then the same whether we consider F; as ¢,-manifold with ¢,(Fy) = *¢,(n)
or as almost complex manifold.

3.4. THEOREM. Lel { be a differentiable fibre bundle as in 3.3. Let » = =,
be a ¢;-map. If the Todd genus T(F;) = +1 then the homomorphism

=' : K*(B) — K*(E)
is injeclive. Moreover x' identifies K*(B,) with a direct summand of K*(Ey).
The endomorphism x, o x' of K*(B;) is the mulliplication with a fired inveriible
elemens of K*(B,).

Proor. We shall use Theorem 3.1 for » with ¥ = E; and X = B,. First
we observe that

4 = AEY-(«*ABY)™ = Ux).
Therefore with ¢ = =, we have by 3.1 (i')

ch(m\(y)) = f,(ch(y)-e " -%(H), ye KE).
Now put ¥y = 1, the unit of K*(E;). Then ch(y) = 1 and it follows easily that
the zero-dimensional component of ch(x,1) equals T(F;). Since T(F;) = =1,
#,1 is an invertible element in K*(B;) (see 2.6) whose inverse we denote by a.
Now let h be the homomorphism K*(E;) — K*(B,) equal to =, followed by
multiplication with a; then (iii) of 3.1 gives

h(x'(x)) = x forall xeK*(B)
which proves the theorem.

The preceding theorem admits various generalisations. For example, if the
Todd genus T(F,) = m > 0, (m ¢ Z), then x' is injective on the direct sum of
those p-primary components of K*(B,;) with p = 0 or a prime not dividing m.
This type of theorem is analogous to 3.2 of [4).

3.5. Let G be a compact connected Lie group and 7 a maximal torus of G.
Let ¢ be a principal G-bundle whose base space B is a compact oriented dif-
ferentiable manifold. Consider the associated bundle with G/T as fibre. Its
total space is E;/T, its base space is B;. With these assumptions we have:

ProrosiTiON. Let x be the projection E/T — By. Then
x' : K*(B) — K*(E/T)
is injective. x'K*(B,) is a direct summand of K*(E/T).

Proor. We may assume that ¢ is differentiable. The bundle along the fibres
of E,/T admits a complex structure such that G/T has Todd genus 1 (see
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{5, §§7.4, 22.3]). The complex structure along the fibres and the orientation
of B; define an orientation for the compact differentiable manifold E,/T. The
proposition follows from 3.4.

TrEOREM. We make the preceding assumptions. Let U be a closed connected
subgroup of G of marimal rank, i.c., we may assume U D T. Then Ey/U is the
total space of the bundle associated to £ and with G/ U as fibre. Let o be the projection
E/U — B,. Then

¢' : K*By) — K*E;/U)
is tnjective. o'K*(B,;) ts a direct summand of K*(E/U).
Proor. We have the diagram

EyT 5 E/U -5 B, gop=m, ' = p' od.

By the above proposition »' is injective which implies ¢' is injective. Also

the last statement of the theorem follows immediately.

RemMark. We have proved this theorem under the assumption that By is
a compact oriented differentiable manifold. A small generalization of the
Riemann-Roch Theorem 3.1 makes it possible to drop the assumption on
orientability. It is probably also true when B; is any finite CW-complex.

The preceding theorem holds in particular for bundles with an even dimen-
sional sphere as fibre and the special orthogonal group as structure group.
If x.: ¥ —> X is such a bundle (X compact oriented differentiable), then »' :
K*(X) — K*(Y) is injective. The corresponding theorem for integral co-
homology holds if X has no 2-torsion (more generally, »* is injective on the
direct sum of the p-primary components of H*(X, Z) with p = 0 or p an odd
prime).

3.6. THEOREM. Let G be a compact connected Lie group, U a closed connected
subgroup of G of mazimal rank. Then K'(G/U) = 0 and K*(G/U) is a free
abelian group with rank equal to the quotient of the order of the Weyl group of G
by the order of the Weyl group of U.

Proor. The theorem is true if U = T (maximal torus of G). In this case
G/T has no torsion in integral cohomology and its odd dimensional cohomology
groups vanish [7]. The theorem follows then from 2.5 if one takes into account
that the order of W(G) (Weyl group of @) is the Euler number of G/T which
equals dimg H**(G/T, Q). For the general case, we assume that U O T and
congider the map r : G/T — G/U. Then =' is injective by 3.5. It follows
that K'(G/U) = 0 and that K°(G/U) has no torsion. It is well-known [3]
that the odd-dimensional Betti numbers of G/U vanish and that the Euler
number of G/U equals ord W(G)/ord W(U). Thus dimg H'(G/U, Q) =
ord W(G)/ord W(U) which completes the proof in virtue of 2.5.

ReEMARK. As in the case of G/T, Theorem 3.6 follows immediately from
2.5 if H*(G/U, Z) has no torsion.
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4. The classifying space of a compact connected Lie group.

4.1. Completions of modules. We shall summarize here some known results
of commutative algebra which we learned from J. P. Serre. These results are
needed in the sequel. For references see Zariski and Samuel, Commualive
algebra, Van Nostrand, and [13, Exposé 18 (Godement)].

Let A be a Noetherian ring, a an ideal of A. We give every finitely generated
A-module M the topology defined by the submodules a". The completion
of M for this “a-adic topology” is by definition

M= l‘i_m M/a*M  (inverse limit).

(i) Let N be a submodule of M. Then the a-adic topology of N coincides with
the topology tnduced on N by the a-adic topology of M.

This is a consequence of the lemma of Artin-Rees which says that there
exists a positive integer h such that (a"M) NN = ¢ " *((a"M) N N) forn = b;
see [13, Exposé 2, Théoréme 2}.

(ii) Let 0 > N — M — P — 0 be an exact sequence of (finitely generated)
A-modulcs; then

0-N-M->P-0

is exacl. Thus “‘completion” is an exact funcior [12, Chapter 1I, §4).
Proor. We bave the exact sequence

0—-N/("MN\N)—M/a"M — P/a’P — 0.

By (i), ¥ is the inverse limit of the first inverse system in this sequence.
Since N/(a***M N N) — N/(a"M N N) is onto for all n and all k¥ = 0, this
inverse system satisfies the “Mittag-Leffler condition.” According to the forth-
coming book of Dieudonné-Grothendieck (Complements to Chapter 0) the
assertion (ii) follows. There is, of course, a direct proof along the lines of [11, §3].

(iii) Let B be a commulative ring, G a finile group of automorphisms of B and
le¢ A = B° be the subring of those elements of B which arc invarian! under all
automorphisms of G. Assume B ts, as an A.-algebra, finitely generated over a
Noetherian subring A, of A. Then B and A are Noetherian and B is a finttely
generated A-module.

Proor. Since A, is Noetherian, B (as a quotient ring of a polynomial ring
over 4,) is also Noetherian. If z ¢ B, then H.,,, (x — o(x)) = 0. Thus =z
is integral over 4. Let z,, -+, z, be generators of B over 4,. Then we have
equations

2t anzi+ -0 F+a, =0, a,ed, q = orderof G.

Thus B is generated as an A-module by the monomials z7* +-- z2*(m; S ¢ — 1),
hence is a finitely generated A-module. Let .4’ be the subring of A generated
over 4, by the a,;. The ring A’ is Noetherian since it is a finitely generated
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Ag-algebra. B is even a finitely generated A’-module. Thus also A is a finitely
generated A’-module. If ¢,, -+ , c, are generators of A as module over A’,
then the ¢, and the a,;, generate A as A,-algebra. Hence A is a Noetherian
ring.

(iv) We make the assumptions of (iii). Let b be an ideal of B which i¢ stable
under G (o(b) = bforoe@). Puta = b A. Let b" = a-B be the ideal of B
generaled by a. Then there exists a positive inleger n such that 5* C ' C b. Thus
b and b’ define the same topology on B.

Proor. Ina noetherian ring, to prove that a power of the ideal b is contained
in B, it is enough to show that all prime ideals p containing b’ also contain b
(see for example [13, Exposé 2]). Let p be a prime containing b’ and let r ¢ b.
Then 2’ = J[,.sa(x) e AN b=10aC . Hencez’ ¢ p. Hence there isa o
with o(z) £ p and thus z ¢ ¢7'(p). Hence b is contained in the union of the
prime ideals a(p), « ¢ G. But it is an easy lemma (see Northcott, Ideal theory,
Cambridge Tracts, pp. 12-13), true in any ring, that if an ideal b is contained
in the union of a finite number of prime ideals, it i3 contained in one of them.
Thus in our case, b C a(p) for some ¢ ¢ G. But b = ¢~ '(b) by assumption.
Thus b C p as contended.

We consider A and B both as A-modules and complete them with respect
to the a-adic topology. We bhave a map A — B which is injective by (ii). In
view of (iv) B is also the completion of B with respect to the b-adic topology
of B. The group G operates naturally on B. Let (B)° be the ring of invariants.

(v) Under the preceding assumptions the map A — B maps A (bijectively)
ondo (B)®. Thus (B°)" = (B)°.

Proor. Let B(G) be the ring of all maps from G into B. This is a direct
sum of g copies of B where g is the order of G. We consider the exact sequence

0— B° — B -5 B(®

where a(b), b ¢ B, is the map which attaches to ¢ ¢ G the element b — o(b) ¢ B.

All rings in this exact sequence have to be considered as A-modules (4 = B?).

We complete them with respect to the a-adic topology. ‘“Completion’ is an

exact functor, hence (B(G))~ = B(G) and the resulting sequence
0—9(30)--—»3 24 86

is exact which proves (v).

4.2. The representalion ring of a compact Lie group. Let G be a compact
Lie group. Let (p;, ps, - - -) be the (equivalence classes of) irreducible complex
representations of G. Let R(G) be the free abelian group generated by the p,.
The tensor product of representations makes R(G) into a ring which we shall
call the representation ring of G. The complex representations of G may be
identified with the elements Y. n,p; of R(G) where the n, are non-negative
integers.

Let ¢ : R(G) — Z be the “augmentation homomorphism” obtained by attaching
to each representation of G its dimension. Let I(GQ) be the kernel of ¢; it will
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be called the augmentation ideal of R(G). We define the completed represen-
tation ring with respect to the I(G)-adic topology:

R@G) = l;uf R@G)/1@G) (inverse limit).

Let G, H be compact Lie groups and G — H a homomorphism; then we have
an induced homomorphism R(H) — R(G) which maps I(H) in I(G) and is
therefore continuous with respect to the I(H)-adic topology of R(H) and the
I(@)-adic topology of R(G). It induces therefore a homomorphism R(H) —
R(G). Suppose now G = H. Then any automorphism of G induces auto-
morphisms of R(G) and of R(G). An inner automorphism induces the identity.
If G is connected and T a maximal torus of G, then the Weyl group W(G) is
a group of automorphisms of T and thus operates also on R(T) and R(T).

4.3. The completed represenialion ring of a torus. Let T be a torus. We
write it as the group of k-tuples of reals mod 1. Every irreducible represen-
tation of T is 1-dimensional and given by a homomorphism

(1, -+ -y 72) > exp (2ri(azy + -+ + ), 6;¢Z,
of T into U(1). The ring R(7") may be identified with that subring of the ring
of formal power series C[[z,, - - - , z.]] which is generated over Z by

exp (2xiz)), exp (—2wizy), - -+, exp (2xiz.), exp (—2xiz,).
Hence R(T) s Noetherian.
Let z,, - - - , 2, be indeterminates. We give the polynomial ring Z{z,, --- , 2,]
the (z,, -+ - , 2;)-adic topology, and define a ring homomorphism
é:2Z[z, -+-, 2] - R(T)

by setting ¢(2;) = exp(2xiz;) — 1. Then ¢(z,) ¢ I(T), thus ¢ is continuous
and induces a homomorphism ¢ of the completed rings.

ProposrrioN. The homomorphism
6 : Z[[Zl, ) Zg]] nd R(T')
18 bijective. (Z[[z,, - - - , 2,]] is the ring of formal power series.)

Proor. Put A = Z[z, ---, 2). Under ¢ we may identify 4 with a subring
of R(T). For the latter ring we may write

R(I’) = Z[zh ct oy 2y (l + zl)-li *tty (1 + zk)_l]'

We have then I(T) = (25, - -+ ,2,, 1 +2)"' = 1,---, (1 +2)"' — 1). Thus
the ideal I(7T)* of R(T) contains only formal power series with lowest term
of degree 2 n. Thus I(7)* N A contains only polynomials with lowest term
of degree = n. Therefore, I(T)*M A C (2, -+ -, 2)" Clearly, (2, - -+, 2)" C
I(T)"MN A. Thus

ITYNA =@, -, 2) = IT)N A)".

This shows that the (z,, --- , 2,)-adic topology of A coincides with the topelogy
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induced from the embedding of 4 in R(T). Thus ¢ is injective. Since ¢(4)
contains R(T), the map ¢ is surjective.

Nore. We have just considered R(T) as subring of R(T). This is all right,
gince R(T) s Hausdorff in its I(T)-adic topology. In fact, (") I(T)" = 0,
gince an element of this intersection would be a power series whose lowest
term has an arbitrarily high degree.

4.4. The completed represenlalion ring of a compact connected Lie group.
Let G be a compact connected Lie group and T a maximal torus of G. The
Weyl group W(G) operates on R(T); see 4.2. We have a ring homomorphism
R(@) — R(T) (by the restriction map) which is injective. R(G) maps (bi-
jectively) onto the ring of invariants of R(T) under the action of W(G). This
classical result follows from the fact that the highest weight of an irreducible
representation has multiplicity one (compare [5, §3.4]). We denote this ring
of invariants by R(T)"‘® and identify R(G) with it. We have the situation
of 4.1 (iii). 4, is here the ring Z of integers. Thus we know that R(G) is
Noetherian and that B(7) is a finitely generated module over R(G).

W (G) operates naturally on R(7) and we have an induced map R(G) — R(T)
(see 4.2).

TueoreM. Let G be a compact connected Lie group, T a mazimal torus of G.
Then B(G) — R(T) maps R(G) bijectively onto (R(T))™‘?, the ring of invariants
of W(G) in R(T).

Proor. We are exactly in the situation of 4.1, Here R(T) plays the role
of B, R(G) of A, W(@) of G, and Z of A,. The ideal b corresponds to I(T),
the ideal a to I(T) N\ R(G) = I(G).

Note. R(G) is Hausdorff, since (M} I(®)* C (. I(T)" = 0. The homo-
morphism R(G) — R(G) is injective. This is in general not true if G is not
connected (Atiyah, Characlers and cohomology, in preparation).

4.5. Let X be a space belonging to the class ¥ of 1.1. Let ¢ be a principal
G-bundle over X where G is a compact Lie group. ¢ induces a ring homo-
morphism

a; : R(G) — K*(X) C K¥(X)
in the following way. Consider a representation of G viewed as a homomorphism
p : G — U(m). Then p(¢) is a principal U(m)-bundle and defines an element
ay(p) of K*(X). Since the (equivalence classes of) irreducible representations
are free generators of the additive group R(G) the homomorphism o is well-
defined.

If wehaveamapf: ¥ — X (Y, X ¢ %), if £ is a principal G-bundle over X
and 5 = f*# the principal G-bundle over Y induced from £ by f, then we have
the commutative diagram

- l/.K.(x)
w R@) lf'
o
K*(Y).
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If Y consists of a single point, then K*(Y) 22 Z and a, is just the augmentation
€ : R(G) — Z. This shows that the ideal J(G) is mapped by a; into K%(X)
(see 2.3 Remark). By 2.6 (5) there exists an n, such that «,(I(G)*) = 0 for
n 2 ng. Since R(Q) is the inverse limit of the R(G)/(I(G))® with n = Ny, W€
have a natural ring homomorphism

& 1 R(@) — K*(X).

Obviously, a; is R(G) — R(G) followed by 4,.
If we have as before amap f : ¥ — X, then we have the commutative diagram

0, K*(X)
() R©® N lf' , 7=
" koY)

4 6. Classifying spaces. Let F be a contravariant functor on the class ¥
(see 1.1), i.e., F attaches to each X ¢ % an algebraic object of a given type, say
an abelian group for convenience, and for each continuous map f : ¥ — X
(¥, X ¢ ¥) there is given a homomorphism f* : F(X) -» F(Y) satisfying the
functorial properties and the homotopy axiom (f* = ¢* if the mapsf,g: Y - X
are homotopic).

Let G be a compact Lie group, By its (infinite) classifying space determined
up to homotopy type. We shall define $(B,) to be an algebraic object of the
same type as all the F(X), X ¢ 9. The definition will be such that an element
of F(Bg) is completely given by the group G. The classifying space B is not
needed for the definition, but we write 5(Bg) rather than (@) to avoid the
confusion with F(G).

DEFINITION. An element a of 5(Bg) ts an operalor which atlaches lo each
X and each principal G-bundle t over X an element a($) t F(X) depending only
on the eguivalence class of ¥ such that the following holds: for a map f : Y — X
(Y, X ¢ q), a principal G-bundle t over X and the principal G-bundle f*§ over Y
tnduced from ¢ by |, we have a(f*§) = f*(a(¥)). Using the notalion of [16, §3)
this means that the diagram

f*H'(X,G)— H'(Y', G)

a 1 a 1
f*: FX) — FUY)
18 commultalive.
If U, G are compact Lie groups and p : U — G a homomorphism, then we
have the induced homomorphism

p* :5(Be) — F(By).

For a ¢ 3(Bg), p*a : H'(X, U,) » F(X) is the composition H'(X, U,) —*
X, G) —* FX).
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If U = G and p is an inner automorphism of G, then o* is the identity since
o : H(X, G.) — H'(X, G.) is the identity.

According to the classification theorem [18, §19] we can choose a principal
G-bundle £, which is classifying up to 7, i.e., ».(E;.) = 0 for { S n, and whose
base space By, = B, belongs to %. Let n, < n, < n, < --- be a sequence
of positive integers such that dim B,, £ n.,,. Then £,, is induced from ¢,,,,
by & map B,, — B,,,, uniquely determined up to homotopy. Thus we have
a homomorphism F(B,, ) — #(B,,). This enables us to write $(B,) as an
inverse limit
3 $(Bg) =2 lim F(B.)).

This isomorphism is canonical. In particular, we have:
(4) An element a of 5(Bg) vanishes if and only tf there exists for every n, an
inleger n Z n, and a principal G-bundle &, classifying up to n such that a(%,) = 0.
If we take for F the ordinary cohomology theory with coefficients in some
abelian group, then $(Bg) becomes H**(Bg, A); see [5, §6.1]. If we take for
F the K*-theory of 1.9 then we define the ring

%*(Bs) = X'(Ba) ® X'(Bs) = 5(Bo)

%°(Bg) is the X(Bs) mentioned in the introduction. In this theory we write
p' instead of p*. The Chern character ch : X*(Bg) — H**(B,, Q) is clearly
defined.

4.7. Because of the diagrams (1) and (2) of 4.5 we have canonical ring homo-
morphisms

a : R(@ — X*(Bo), é : (@ — x*(B).
« equals R(G) — R(G) followed by & Of course, « and & map into X°(Bg).
We sometimes write more explicitly ag instead of a and &¢ instead of &.
Let G and H be compact Lie groups and p : G — H a homomorphism; then
we have a commutative diagram
R(G) — R(@) > %x*(Bo) *5 H**(Bg, Q)
9 p**
R(H) — R(H) * %*(Bg) 5 H**(Bx, Q).
4.8 We state now the main theorsm of §4 and give a corollary. The proof
of the theorem will be given in the following sections.

THEOREM. Let G be a compact connected Lie group. Then & is an isomorphism
of R(G) onto X*(Bs).

CoroLrarY. Let G be a compact connected Lie group. Then X'(Bg) = 0.
Moreover, X*(Bg) = X°(Bg) has no torsion and no zero divisors.
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We have seen in 4.4 that R(Q) is a subring of £(T) which is a ring of formal
power series over Z. Thus the corollary follows from the theorem.

REMARK. We conjecture the theorem to hold for any compact Lie group.
It holds if G is finite (Atiyah, loc. cit. in 4.4 Note).

4.9. We prove Theorem 4.8 first for the case where G is a vorus T which we
describe as in 4.3 as the group of k-tuples of reals mod 1. Let P, be the complex
projective space of complex dimension n. Over P, we take the U(1)-bundle
1. whose first Chern class is the canonical generator g of H*(P,, Z) =~ Z; see
{15, §4.2). 19, is induced from 4,,, by the embedding P, — P,,,. Let B,. be
the cartesian product of k copies of P,. Over B,, we have the T-bundle £,
which is the Whitney sum of the »%(».), 1 < ¢ < k, where x, is the projection
of B,, on its ith factor. &, is classifying up to dimension 2n. We have the
embedding B,. — B,,.; which induces #,, from %,,,, and which gives rise to
the homomorphism K*(Bs,.3) — K*(Bs.). It follows from 4.6 (3) that

X*(By) = lim K*(B,J),

the inverse limit being taken with respect to the maps K*(By.y) — K*(Bs.)
just defined.
Let us denote by z, the first Chern class of »%(5.), i.e., z; = #%(g). Then

6)) H*By,, Z) = Z[1y, +- -, 1}/ L1

where I,,, is the ideal (z}**, -+, 53*).

We consider the map ck © a;,, © ¢ of the polynomial ring Z[z,, --- , 2] into
H*(B,., Q), see 4.3 and 4.5. It mapsz, onto e” — 1. Sincee® — 1 = z; + higher
terms, it follows from 2.5 (iii) that «;,, © ¢ maps Z[z,, - - - , 2.} onto K*(B,,) =
K°(B,.), the kernel being the ideal J,., = (£*}, --- , 22*") as follows from (5).
Thus

K*Bs) & Z[z,, -+, 23)/J e
and
(6) X*(By) == 1::5n Zlz,, -5 2]/ Jaer-
If we identify R(T) with Z[[z,, - - - , 2.]] (Proposition 4.3) and %*(By) with the
above inverse limit (6), then & : B(T) — %*(By) is just the natural map
Zllz, , -+ ,a)] — li:n Zlzy , -+ y2)/Janr -
To prove that this map is bijective, one has to check that the (z,, : - - , 2,)-adic

topology of Zlz,, - - , z,) and the topology defined by the sequence J, of ideals
coincide. But this is easy to do.

4.10. ProposITION. Let G be a compact connecled Lie group, T a mazimal
torus of G and p : T — G the embedding. Then the map o' : X*(Bg) — X*(By)
(aee 4.6) 13 Tnjective.
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Proor. We first observe that there exist principal G-bundles which are
classifying up to n (n arbitrary) and which have a compact oriented differentiable
manifold as base. This is true for G = U(m), since then we have the complex
Grassmannians as “‘universal’” base spaces. An arbitrary G may be embedded
in U(m) for m sufficiently large. G has thus “universal’’ base spaces which
are fibred with U(m)/G as typical fibre and complex Grassmannians. The bundle
along the fibres is orientable, since it is an extension of a principal G-bundie
and G is connected [6, §7.5]. Hence we have constructed universal base spaces
for G with the desired properties (compare [18, §19.6}).

Let a be an element of X*(Bg) for which p'(a) = 0. Then we must show
that a = 0. By 4.6 (4) and the above observation on classifying bundles, it
suffices to prove that a(£) = 0 where £ is any principal G-bundle over an arbitrary
compact oriented differentiable manifold X. Using the notation and the propo-
gition of 3.5 with B; = X it suffices to prove that x'a() = 0. But x'a(¢) =
a(»*%), the lifted bundle »*# equals p(y) where 7 is a principal T-bundle. Now
a(p(n)) = (p'a)(n) = 0.

4.11. ProoF or THEOREM 4.8. We have the commutative diagram

R(T) 25 x*(By)
t o'

R© = %*(Ba).

The vertical maps are injective, the upper horizontal one is bijective (4.4,
4.10, 4.9). Thus 4, is injective. The Weyl group W(G) as group of auto-
morphisms of 7' operates on X*(By) (see definition of p' in 4.6). Since these
automorphisms come from inner automorphisms of G, every element of p'%*(B)
is invariant under W(G). The operation of W(G) on R(T) and X*(By) is the
game if one identifies the two rings under &r; this follows from the diagram
in 4.7. Therefore by 4.4

&7'(p'%*(Bo)) C iR(®),
p'%*(Bs) C aR(D) = p'acR(G).
Since p' is injective, %*(Bg) C &oR(G) which completes the proof.
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Lecture notes of the American Math. Soc. Summer Topology
Institute, Seattle 1963

LECTURES ON K-THEORY
F. Hirzebruch

(Notes prepared by Paul Baum)

In these two lectures on K-theory I shall:

(i) Give the elementary proof (due to Atiyah and Bott) of the
Bott periodicity theorem.

(ii) Develop the basic machinery of K-theory (using Dold's
lectures on half-exact functors) and show how Adams and Dyer have
applied it to obtain Adams' result on the nonexistence of elements
of Hopf invariant one.

1 shall under (i) only give the surjectivity of the Bott homo-
morphism whereas the injectivity is obtained under (ii) from
'general nonsense'. This shortens the exposition. For the full
elementary proof see the notes of Atiyah and Bott distributed during

this Summer Institute.

1. Vector bundles on X and vector bundles on X X S2

Let X be a compact topological space. We shall prove the
Bott periodicity theorem by examining the relationship between
complex vector bundles on X and complex vector bundles on

X X Sz. A complex vector bundle may have different fibre dimen-
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sions over the various connectedness components of its base space.
We consider 5% as C U~ and 8' as {z||z] =1}
If E is a complex vector bundle on X, Ex denotes the
fibre of E at x € X. A clutching function for E is a function p

which continuously assigns to each (x, z) € X X S1 an automor-
phism p(x, z) of Ex' An endomorphism of E is a function a
which continuously assigns to each x € X an endomorphism a(x)
of Ex' a is an automorphism of E if a(x) is non-singular for
all x € X. A clutching function p is linear if there exist endo-
morphisms a, b of E suchthat p(x, z) = a(x)z + b(x). A
clutching function p is polynomial if there exist endomorphisms

a_ of E suchthat p(x, z) = an(x)zn + an_l(x)zn-1 +

IR
..o+ al(x)z + ao(x).

a, a

Given E and a clutching function p for E a complex
vector bundle (E, p) over X X s? can be constructed as follows:

Set

+ -

D = {zllz] =1}, D ={zllz]| =1}

+ . + - : -
E =E liftedto XXD , E =E liftedto XX D .

Then (E, p) is formed from the disjoint union of E' and E by
identifying the point (x, z, V) € E with the point (x, z, p(x, z)v) €E
for x €X and z €S

The operation (E, p) has these elementary properties:

(i) Any vector bundle F over X X s? is isomorphic to an
(E, p). Put E = i*F where i:X — X x 8% with i(x) = x x 1.

(if) (E, p) is isomorphic to (E, p') if p and p' are homotopic
as clutching functions, i.e. if there is a continuous family Py
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0 =< t =<1, of clutching functions such that P,=P, P, =P

(iii) If a is an automorphism of E then (E, p) = (E, ap) =
(E, pa). Here and in the following we allow ourselves to use for
i{somorphic the equality sign.

(iv) If X is a point and E is the trivial line bundle over X,
then (E, z™') is the Hopf bundle H over s%. For any integer

m -m
m, (E,z )=H .

of degree 1 of the algebraic curve s?.

The line bundle H belongs to the divisors

v) (E, zp) = (E, p) ® n;(H-m), where 7_:X X s?-8? is

the projection.
Notation. If E is abundle on X and F is a bundle on
S? then E® F denotes n;‘(E) ® n;(F), where L& X x §% - X,

1:2:X x 82 - 8% are the projections.

Lemma 1.1. Let X be a compact topological space, E a

vector bundle on X, and p a linear clutching function for E. Then

bundles E1’ E2 can be chosen on X such that

(E, p)=E1§H'1+E2®1.

Proof. Set p(x, z) = a(x)z + b(x). Since X is compact a
complex number z, with |z0| < 1 can be chosen such that
ax) + b(x): z , is non-singular for all x € X,

1 z +tz,
Forall z €S, te€[0, 1], we have l_ﬁt’i_o =1, so
z + tz0
setting pt(x, z) = a(x) - — + b(x) a homotopy of clutching
1+ ztz0
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functions between p and P, is obtained where pl(x, z) =

z+z
0

a(x) - + b(x) .

1+2zz
0

Set pz(x, z)=(1 + zio)pl(x, z) = [a(x) + b(x)Eo]z +
a(x) - z, + b(x). The number z, was chosen so that a(x) +b(x)20
is non-singular, so set p3(x, z) = [a(x) + b(x)Eo]-lpz(x, z) =
z + [a(x) + b(x)Eo]'l[a(x) ozt b(x)] = z + b'(x). From elementary
properties (ii) and (iii) above it follows that (E, p) = (E, p3). Since
p3(x, z) is non-singular for lz] =1, the endomorphism b'(x) has
no eigenvalues of absolute value one. For each x € X and each
xest let Ei: {veE | n with - bG)v=0) Set
Ef- o E El= © E'. Let E, i=1, 2, bethe

X Iaf<1 ¥ X |a>1 % !

sub-bundles of E whose fibres at x are E; E; respectively.
Then E = E1 @ E2 and each Ei is mapped into itself by
p3(x, z) = z + b'(x).

So (E, p,)=(E, pBIEl) ®(E,, pBIEz). p3|E1 is homo-
topic to z with the homotopy given by z +tb', 0= t= 1. This
is a homotopy of clutching functions since b’ IE1 has no eigenvalue
of absolute value =1. p, IE2 is homotopic to b’ IE2 with the
homotopy given by tz +b', 0=<t= 1, b' is non-singular on E2
50 (Ez’ b') = (Ez’ 1). Thus (E, p) = (B, p3) = (El, z) + (Ez’ 1) =

- -1 ~
E1®H +E2®1.

Lemma 1. 2. Let X be a compact topological space, E a

vector bundle on X, p a polynomial clutching function for E. Then

there are vector bundles El, Ez’ E3 on X such that

(E, p)+E3é1:E1®H'1+E2é1.
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n n-1
Proof. Set p(x, z) = an(x)z + an_l(x)z +... 4 ao(x).
Let an be the clutching function for (n + 1)E represented by
the (n + 1) X (n + 1) matrix

(1 -z 0 0 0|
1 -z 0
0 0 1 ~Z 0
0 0 0 1 -z
—'n an-1 an-2 a1 a0—

an is a linear clutching function for (n + 1)E. By lemma 1.1

there exist vector bundles E1’ E2 on X such that
(m + 1)E, L") = E, OH !+ E, ®1.
The matrix for an can be transformed by elementary row

and column operations (i. e. adding a multiple of one row (or column)

to another row (or column)) to the matrix

1 0 0 0
0o 1 o0 0
0 0 1 0
0 0 0 azl+... +a

Each row (or column) operation can be achieved as a homotopy of
clutching functions by adding tx - (row) to another row and letting

t range continuously from zero to one. Thus by (ii)

227



(20)

((n+1)E, L") = (nE, 1) + (E, p) = nE ® 1 + (E, p)

(E, p)+nEé1=E1éH'1+E2é1.

Proposition 1. 3. Let X be a compact topological space.

If F is any vector bundle over X X s? then bundles E1’ Ez’ E3

over X and integers m, m, m,  can be chosen such that

F®E3®H =E1®H +E2®H

3

Proof. Choose a vector bundle E over X and a clutching
function p for E such that (E, p) = F. For each integer n define

an endomorphism a o E by

1 p(x, z)dz
a,(® =3 f o

n=k
n 1
Set pk(x) = nz})_k an(x)z . The sequence = (po tp, t.. pn)

converges uniformly to p (Fejer's theorem). Taking a close enough
approximation to p we conclude that p is homotopic to a clutching
function of the form z'mq where q is a polynomial clutching
function. By lemma 1. 2 vector bundles E3, E1’ E2 on X can be
chosen such that

~

(E, q)+E3®1=E1éH'1+E2®1
But
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(E) p) = (Ey Z—mq) = (E, q) é Hm

80

E, p)+E. ®H =E ®u™ 1 +E > u™,
3 1 2

2. Definition of K(X)

W denotes the category whose objects are finite CW
complexes and whose morphisms are homotopy classes of continu-

ous maps. For X e W set:

B(X) = commutative semi-group of isomorphism classes of
(complex) vector bundles over X with addition
given by the Whitney sum

F(X) = free abelian group generated by the isomorphism
classes of vector bundles on X

R(X) = subgroup of F(X) generated by all elements of the
form gl (2] 52 - §1 - gz where @ indicates the

Whitney sum.

Then K(X) = F(X)/R(X). The operation in K(X) is denoted by +.
As sets B(X) C F(X). Composing this inclusion with the
projection F(X) — K(X), a homomorphism i:B(X) - K(X) of
abelian semi-groups is obtained. @ carries over into +. Thus it
will cause no confusion that we have written + for the Whitney sum
in the preceding section. If h is any homomorphism of abelian
semi-groups mapping B(X) into an abelian group A, then there is
a unique homomorphism h of abelian groups mapping K(X) into A
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suchthat h=ho i

h
B(x) A
| /
KX)

If X, YeW and f:X—~Y is a morphism in W then by
associating with each bundle E over Y the induced bundle f*E
over X a map B(Y) - B(X) is constructed. By the universal
mapping property for i there is a unique homomorphism
K({):K(Y) = K(X) such that the diagram

f*
B(Y) B(X)
i 1 i[
K(f)
K(Y) K(X)

is commutative. (K(f) is denoted by £ ! .) Thus K is a functor
from W to the category of abelian groups. The operation of
forming the tensor product of two bundles makes K into a functor
from W to the category of commutative rings with unit.

If ¢ eB(X) then ¢ - dim (fibre ) defines a homomorphism
B(X) - HO(X; Z). The induced ring homomorphism K(X) — HO(X; Z)
is called the rank.

Given an element £ € B(X) let

even

B =1+c (H+c (H+... <o u2ix; z) = u¢ve" (x; 2)

1

be the total Chern class of £ Then there is an induced homomor-
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even ocven

phism of abelian groups c¢:K(X) - G (X; Z) where G (X:7)
is the set of all sums 1+a2+a4+...,W1tha eH (X;Z)
and with group operation given by the cup product in H*(X; Z).

For &t € B(X) define

) — v 4 5 G 6O

k=1 kI
where Sk is the universal polynomial which expresses the sum
xl: + . xN (N = k) in terms of the elementary symmetric function

of the x;,. We have sl(g) = cl(g), s (g) =c (g) - 2¢ (g)
sn(i) =z ncn(g) + composite terms.

ch:K(X) — H*V®"
and is called the Chern character.

(X; Q) is a natural ring homomorphism

Since X has a unique map onto a point there is a homomor-
phism Z = K (point) = K(X) whose cokernel we call K(X). There
are (unnatural) splittings K(X) = Z ® K(X) depending on the choice
of a base point: If X, € X, then K(X) = Kernel (K(X) - K(xo): Z).
As an abelian group K(X) can be naturally identified with the

group of stable vector bundles on X. I X is connected, we have
K(X) = [X, BU(n)] for n>> dim X.

K is a half-exact functor in the sense of Dold, i.e. if A-X—~X/A

is a sequence in W obtained by collapsing the subcomplex A of

X to a point, then the sequence

KX/A) - K(X) - K(A) is exact.
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Given objects X, Y in W, choose base points in X and Y and
form the sequence

a B
XvY - XXY - X+#Y

Then the sequence

~ Bl _ al _
0=+KX#Y) - KXXY) - KXvY -0

is split exact as is true for all half-exact functors. The homomor-
phism »:K(X) ® K(Y) - f((X X Y) given by the two projections
gives rise to the splitting once we have identified f((X v Y) with
Ex) e f((Y). In order to avoid reference to base points we shall
think of f((X #Y) as the cokernel of y. If £ ¢ K(X) and

n € K(Y) then the external product £ ® N = 11!15 ® 1r!2n e KX XY)
is defined. It induces an external product for the cokernels K:

®: KX ®K(Y) -KX+#Y)

The Chern character gives a natural transformation of half-exact
functors

ch:K - gEVer ( ;Q

compatible with the multiplicative structures.

Complex vector bundles E over s? are classified by two
integers: (i) dim fibre E, (ii) cl(E)[Sz]. From this it follows
that K(S°) = Z + Z. An additive basis for K(S°) is given by
1, H- 1. H denotes, as in section 1, the canonical line bundle
over S2. ch:K(Sz) - H*(Sz; Q) maps K(Sz) isomorphically onto
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H*(Sz; Z) C H*(Sz; Q). Asbundles H®H+1=H+H In
KS%) H? +1=2H, H-1)2=0 and H®=(Q + (H-1)™ =
1+ m(H - 1).

Notation. The map from K(X) to K(X #S°) which takes
an element £ € K(X) to £® (H- 1) € K(X # §%) will be denoted
by §(H - 1):K(X) - KX # Sz). It is the Bott homomorphism. Here
H - 1, the generator of K(Sz) is actually the image of H- 1 and
of H under K(s?) - K(s?)).

Proposition 2.1. ®(H - 1):K(X) -~ K(X # §%) is surjective.

Proof. From proposition 1. 3 and the remark that
P =1+ m(H - 1) it follows that for any element £ € K(X X Sz)
elements 51, §2 € K(X) can be chosen such that

E=m(8)+m(E) @M (H-1).

Going over to the cokernels K we get the result.

3. Proof of Bott periodicity

Theorem 3.1. (a) If X is a finite CW-complex then
®H - 1):K(X) - K(X # 5% is bijective.

(b) For each non negative integer k, ch maps R(SZk) iso-

morphically onto H2k(82k; Z) C HZk(SZk; Q).

Proof. ®(H - 1):K(X) ~ K(X #8%) is a natural transfor-
mation of half- exact functors so it suffices to show that this is
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bijective for the special case when X is a sphere (see Dold's
lecture). Consider ®(H - 1):K(s™) - k(sn+2).
Since U(m) is connected R(Sl) = 0. By proposition 2.1
®(H - 1):K(E" - KE™?) is surjective, so K(S) = 0 for all
odd n by induction.

If n is even (n= 2k) consider the commutative diagram

®(H - 1) .
R(SZk) K (32k+2)
ch ch
i (52X, Q . f1+s%%"2; g
U

where the lower horizontal arrow stands for the external cup
product with the canonical generator U € HZ(SZ; Z). The lower
horizontal arrow is bijective. The upper horizontal arrow is
surjective.

Proceed by induction. The theorem is obviously true for

n= 0. The induction hypothesis is that the left vertical arrow is

an isomorphism of k(SZk) onto fI*(SZk Z) C ﬁ*(SZk' Q). Since

é(H - 1) is surjective and U maps ﬁ*(82k+2

the inductive hypothesis that ch maps f((S ) into I-I"‘(SZIH-2

Thus the diagram may be replaced by the diagram:

®(H - 1) _
&%) & %2
f+s%; 7) fxs2%*2, )
U
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Since ch o ®H - 1) = (G U) o ch and UU o ch is injective, it
follows that é(H - 1) is injective. é(H - 1) is, therefore, bijective

and so is ch:K(SZk+2) -~ ﬁ*(82k+2; Z). This completes the induc-
tion.
Corollary 3.2. Let v be a generator of Hzn(szn; Z).

Then for any complex vector bundle § over S2n the Chern class

c (§) is an integral multiple of (n - 1) v and for every integer
r = 0 mod (n - 1)! there is one and only one ¢ € K(S ) with

cn(g) =1r-V.

Proof. This follows from assertion (b) of theorem 3.1 and

the formula for ch ¢ in terms of the Chern classes of &.

Corollary 3.4. For n>> i, ﬂi(BU(n)) =0 if i is odd
and ni(BU(n)) =7Z if i is even (i= 2).

Proof. For n>> dim X, T{(X) [X, BU(n)]. So for
n>>i> 0 we have .(BU(n)) = ks, k@) =0 if i isodd,
and K(S)— Z if i is even.

Corollary 3.5. ch:K(X) ® Q — H®VE"

equivalence of functors.

(X; Q) is a natural

Proof. chkX)®Q~ Heven(x; Q) is a natural transfor-

mation of half-exact functors, so it suffices to show that
ch:K(X) ® Q ~ A€VeR

X is a sphere. This follows from assertion (b) of theorem 3. 1,

(X; Q) is bijective for the special case when

Corollary 3.6. Let X be a space € W with no torsion in
H,(X; Z). Then ch:kx) ~ &®V®"

(X; Q) is injective and for each
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ac H2k(X; Q) there exists ¢ e K(X) with

chi=a+a € H2k+2q X; Q

ok+2 t Bokea Toor (Bppiog
. . 2k
if and only if a e H  (X; Z).

Proof. ch:k(X) - BVE"

of half-exact functors. Take the spectral sequence of both sides

(X; Q) is a natural transformation

(see Dold, proposition 6. 2)., At the Ez-level we have essentially
HEVEM (x: Z) ~ H®V™ (X; Q) with the map induced by the inclusion
Z C Q. (See Theorem 3.1, b).) Since H,(X; Z) is torsion-free
this map is injective. The spectral sequence for geven obviously
collapses (all differentials vanish). Thus the same holds for K.
We have in both cases E =E_. ace€ E2p’ 2p (Heven 2p(X, Q)
isin H p(X Z) if and only if it is in the image of E2p’ - p(K) =
2p(K) /F2p +1(K). The injectivity on the E _-level implies also

even

KX) - H (X; Q) is injective.

4, Elements of Hopf invariant one

In order to apply K-theory to obtain Adams' result on the
non-existence of Hopf invariant one we need two theorems of Adams

and one number-theoretic fact. We state these without proof:

Notation. For each b € H*(X; Z) the reduction of
b mod 2 is denoted by (b)z' Sq_1 denotes (1 + Sq1 + qu +...7 4

If r €eQ, [r] denotes the largest integer n suchthat n=r. If
q

q isan integer > 0 set p(q) = T p p-1 . Bn denotes the
p prime
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n-th Bernoulli number.

Theorem 4a (Adams). Let X be a space with no torsion in
H,(X; Z). Given a € HZk(X; Z) choose £ € K(X) such that
chi=a+t+a

ok+2 + Aot + ... . Thenfor each g the element

[- ]
is in H2k+2q(x; Z) and Sq" (@) = 3 (u(g)-a ),
= -_— 2 4=0 2k+2q
-1

Q@) © y10q

A similar result holds for the Steenrod operation

Theorem 4b (Adams). Cohomology operations

wl, :pz, RN zpk, ... can be defined in K-theory in one and only
-]
one way such that if £ € K(X) and ch {= } a;; with
s o0 s j:0 ]
a.. € HJ(X; Q) then ch(y, &)= 3 Ka..
ij —_— k j=0 2j

Theorem 4c. Fix an integer n andlet k=1, 2, 3, ... .

The greatest common divisor dn of k2n(k2n - 1) is a divisor of
= oA

the denominator of —3% which is of the form 2 ™ . odd number,

where n=2 ™. odd number. In fact dn or 2dn equals the

. Bn
denominator of I

Remark. We shall need the Theorems 4a and 4c only as
far as the prime 2 is concerned.

Theorem 4.1. If I #2, 4, 8 there is no element of Hopf

invariant one in 7

z
21-16")-

Proof. We may assume ! even and set I = 2n. Let

f:SZl'1 - Sl be a map of Hopf invariant one. Form the space
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X =gt Up ey, - HUX; 2), B2 x; z), H'(X; Z) are infinite
cyclic and all other cohomology groups of X are zero. Let g, be
a generator of Hzn(X; Z). Then g, =8 U8, is a generator of
H'™(X; Z). Choose & €K(X) suchthat ch £=g +)g, with
A €Q Let 2° be the largest power of 2 dividing the denominator
of . Since Sq'l(gl)2 =), t@,),=(@), + kn)-2rg), we
have n = s.

By theorem 4b ch(xpkg) = kng1 + kzn)\gz. By corollary 3. 6
ch(zpkg - K"y = )\(kzn - kn)g2 is an integral cohomology class. So
A(k2™ - kD) is an integer for all k. By theorem 4c the denominator
of A divides the denominator of %% Let 2" be the largest power
of 2 dividing n. Thus n = [ + 3, which implies n = 4.

The case n = 3 is also easy to exclude.
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21 VECTOR FIELDS ON SPHERES

BY J. F. ADAMS!
Communicated by Deane Montgomery, October 9, 1961

Let us write n=(2a+1)2% where ¢ and b are integers, and let us
set b=c+4d, where ¢ and d are integers and 0<c¢<3; let us define
p(n)=2°4+8d. Then it follows from the Hurwitz-Radon-Eckmann
theorem in linear algebra that there exist p(n) —1 vector fields on
S»~1 which are linearly independent at each point of S (cf. [4]).

THEOREM 1.1. With the above notation, there do not exist p(n) linearly
independent veclor fields on S*1,

This theorem asserts that the known positive result, stated above,
is best possible. Like the theorems given below, it is copied without
change of numbering from a longer paper now in preparation.

Theorem 1.1 may be deduced from the following result (cf. [1]).

THEOREM 1.2. The truncated projective space RPmtem/RPm—1 s
not coreducible; that is, there is no map f: RPmte(m /RPm—1_58m sych
that the composite

Sn = RPm/RP~1 2y Rpwioe /Rt L, o

has degree 1.

Theorem 1.2 is proved by employing the “extraordinary cohomol-
ogy theory” K(X) of Atiyah and Hirzebruch [2; 3]. If our truncated
projective space X were coreducible, then the group K(X) would
split as a direct sum, and this splitting would be compatible with
any “cohomology operations” that one might define in the “co-
homology theory” K(X).

THEOREM 5.1. It is possible to define operations

Th: Ku(X) > Ka(X)

for any integer k (positive, negative or zero) and for A =R (real numbers)
or A=C (complex numbers). These operations have the following prop-
erties.

(i) Y} is natural for maps of X.

(ii) Wi is a homomorphism of rings with unit.

(iii) The following diagram is commultative.

! Supported in part by the National Science Foundation under grant G14779,
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k
Vg
Kr(X) — Kr(X)

cl : le
Ye
Ke(X) — Ke(X)

(Here the homomorphism ¢ ts induced by “complexification” of real
bundles.)

(iv) V¥, =¥}

(v) Vi and Yg' are identity functions. V3 assigns to each bundle over
X the trivial bundle with fibres of the same dimension. ¥g' assigns to
each complex bundle over X the “complex conjugate” bundle.

(vi) If t€Ke(X) and ch,t denotes the 2q-dimensional component
of the Chern character ch &, then

ch'(Wet) = B ch'E.

This theorem is proved using virtual representations of groups. By
(iv), (v) it is sufficient to define ¥} for 2>0. One can define poly-
nomials Q% by setting

@) + () + -+ (22) = Qnlor, 03, - - - 0w

where g; is the ith elementary symmetric function of x,, xz, - * + , Xa.
One can define a virtual representation of GL(n, A) by setting

k A 1 2 n
¢n = Qn(EA) EA’ R} EA)
where E} denotes the sth exterior power representation. The opera-
tions ¥} are induced by the virtual representations y2.
The values of our groups K(X) and of our operations in them are
given by the following result. In order to state it, we define ¢(n, m)

to be the number of integers s such that m<s<#n and s=0, 1, 2 or
4 mod 8.

THEOREM 7.4. Assume m# —1 mod 4. Then Kz(RP"/RP™) =2y,
where f=¢(m, n). If m =0 then the canonical real line-bundle £ yields a
generator N\=£— 1, and the polynomials in N\ are given by the formula

AQ(N) = Q(=2)),

where Q is any polynomial with integer coefficients. Otherwise the projec-
tion RP*—RP"/RP™ maps Kr(RP™/RP™) isomorphically onto the sub-
group of Kr(RP™) generated by N+, where g=¢(m, 0). We write
A@+D for the element n K p(RP"/RP*) which maps into \o+!,
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In the case m= —1 mod 4 we have
Kr(RP*/RP*") = Kp(RP*/RP*) + Z;

here the first summand is embedded by an induced homomorphism and
the second is generated by a suilable element X9, where g=¢(4t, 0).
The operations are given by the following formulae.

. b)) 0 (k even),
® Yedoo= { A+ (k odd);
o B oG) 2= (1/2)krpa+D (k even),
® Fah T =EAT+ {(1/2)(13" — DAGD ( 0dd).

This theorem is proved by deducing results in the following order:
(i) Results on complex projective spaces for A=C.

(ii) Results on real projective spaces for A= C.

(iii) Results on real projective spaces for A=R.
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22 ON THE GROUPS J(X)—IV

J. F. ADAMS

(Received 6 July 1965)

§1. INTRODUCTION

FROM ONE POINT of view, the present paper is mainly concerned with specialising the results
on the groups J(X), given in previous papers of this series [3, 4, 5], to the case X = $". Itcan,
however, be read independently of the previous papers in this series; because from another
point of view, it is concerned with the use of extraordinary cohomology theories to define
invariants of homotopy classes of maps; and this machinery can be set up independently
of the previous papers in this series. We refer to them only for certain key results.

From a third point of view, this paper represents a very belated attempt to honour the
following two sentences in an earlier paper [2]. ‘“However, it appears to the author that
one can obtain much better results on the J~homomorphism by using the methods, rather
than the results, of the present paper. On these grounds, it seems best to postpone discussion
of the J-homomorphism to a subsequent paper.” I offer topologists in general my sincere
apologies for my long delay in writing up results which mostly date from 1961/62.

I will now summarise the results which relate to the homotopy groups of spheres.
For this one needs some notation. The stable group Lim =, ,(S") will be written n5. The

n=x

stable J-homomorphism is thus a homomorphism
J:n(S0) - nl.

THEOREM 1.1. If r = 0 mod 8 and r > 0 (so that =, (SO) = Z,), then J is a monomorphism
and its image is a direct summand in n3.

Before considering the case r = 1 mod 8, we need a preliminary result. Suppose that
r=1or 2mod 8. Then any map f: $7+" — $? induces a homomorphism

[*: RS - Ry(S™),
where the functor K} is that due to Grothendieck-Atiyah-Hirzebruch [10, 11, 2]. We have
KV=2, Ris™) =12,

THEOREM 1.2. Suppose that r =1 or 2mod 8 and r > 0. Then n> contains an element
1, of order 2, such that any map f: S**"— S representing p, induces a non-zero homomorphism
of K4.

The elements u, may be described more precisely than is done in this theorem. We have
#, =n and g, = nn, where 7 is (as usual) the generator of n;. The elements y, constitute a
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aystematic family of elements, generalising n and nn; they have interesting properties, which
f hope to discuss on another occasion. I am indebted to M. G. Barratt for ideas about
gystematic families of elements.

THEOREM 1.3. Suppose that r = 1mod8 and r > 1 (so that n(SO)=Z,). ThenJ is a
monomorphism and 75 contains a direct summand Z, + Z,, one summand being generated
by p, and the other being Im J.

The case r = 1 is exceptional, in that the two summands coincide.

THEOREM 1.4. Suppose that r = 2 mod 8 and r > 0. Then n5 contains a direct summand
Z, generated by y,.

THEOREM 1.5. Suppose r = 4s — 1 = 3 mod 8, so that n,(SO) =Z. Then the image of J
18 a cyclic group of order m(2s), and is a direct summand in 7.

In this theorem, m(¢) is the numerical function discussed in [4, §2]. More explicitly,
fet B, be the sth Bernoulli number; then m(2s) is the denominator of B./4s, when this
fraction is expressed in its lowest terms.

The direct sum splitting will be accomplished by defining (§7) a homomorphism

e;(: nrs - Zm(Z:)
such that
et : 1 (SO) > Z 2y
is an epimorphism.

THEOREM 1.6. Suppose r =45 — | = 7 mod 8, so that n(SO) =Z. Then the image of J

is a cyclic group of order either m(2s) or 2m(2s). Moreover, there is a homomorphism
S
ek' n, - Zu(Zs)
duch that
ep) 1 (SO) > Z 2y
is an epimorphism.

It follows that if the order of Im J is m(2s), then Im J is a direct summand ; this happens
(for example) if r = 7 or 15. In any event, the subgroup of elements of odd order in Im J is
a direct summand in =5,

It will not be proved in this paper, but by more delicate arguments one can show that
even for r = 7 mod 8, the group = splits as (Ker eg) + Z,,3,); however, I do not know how
the subgroup Im J lies with respect to this splitting.

The invariants (such as e) which we shall introduce have convenient properties, and
lend themselves to a variety of calculations; examples will be given in §§11, 12. They are
not restricted to maps between spheres. The following result provides rather a striking
example. We take p to be an odd prime, g : $29 ! —» §247! {0 be a map of degree p’, and
Y to be the Moore space S*'u, e?. Thus K(Y)=Z,,. S¥Y will mean the 2r-fold sus-
pension of ¥; we take r = (p — 1)p' ™",

THEOREM 1.7. For suitable g there is a map

A:S¥Y Y
which induces an isomorphism

A*: R(Y) > RA(S¥Y).
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Therefore the composite
A.STA.SYA. .. ST V4: 8y L, Y
induces an isomorphism of R, and is essential for every s.

For f=1 this result is related to Toda’s sequence of elements «, € 73 ,—4,—, [16,17],
as will be explained in §12.

From the point of view of history or motivation, the sequence of ideas in this paper
may be ordered as follows. Suppose given a map f: X - Y. We may form the mapping
cone Y u; CX; by studying the group XY U, CX) and the homomorphism

ch:K(Yu,CX)->H*(Yu,CX; Q)

we may sometimes succeed in distinguishing ¥ v, CX from Y v §X; thus we may some-
times show that f is essential. This method was presumably known to Atiyah and Hirze-
bruch (ca. 1960/61); it is given in [6] (for the case in which X and Y are spheres) and was
published by Dyer [13]. See also [19]. We touch on it in §7 of this paper.

One next realises that in the preceding construction, the possible Chern characters that
can arise are severely limited by the fact that K(Y U, CX) admits operations W*. This
observation leads to a proof of the non-existence of elements of Hopf invariant one (mod 2
and mod p); this proof was given in [6], and was first published by Dyer [13]. We touch
onit in §8 of this paper. It should be said, however, that the most elegant proof by K-theory
of the non-existence of elements of Hopf invariant one is somewhat different; see [8].

One next realises that the essential phenomenon we have to study is the short exact

sequence
RAY)—RAY v, CX)—RASX)
of groups admitting operations W*. The class of this short exact sequence yields an element
of a suitable group
Ext'(RLY), RASX)).

This element gives an invariant of /. If K(Y v, CX)is torsion-free this approach is equiva-
lent to that using the Chern character; if K(Y v, CX) has torsion this approach is better
than that using the Chern character. We therefore adopt this as our basic approach. It
has been sketched in [7], and will be fully explained in §3.

In the above, we can of course use Ky instead of .. The use of K, and the use of
spaces with torsion gives the extra power needed to prove results such as Theorems 1.1, 1.3,

Once we realise that our invariants should take values in suitable Ext' groups, certain
properties of the invariants become very plausible. Our invariants carry composition prod-
ucts (of homotopy classes) into composition products (in Ext) (§3); they carry Toda
brackets (in homotopy) into Massey products (in Ext) (§§4,5). These products enable one
to perform many calculations.

The arrangement of the paper is as follows. Since we make constant use of cofibre
sequences

s/
X-Y->Yu,CX->SX...,

244



(22)

we devote §2 to them. In §3 we define our invariants and give their basic properties.
§84, 5 are devoted to their properties on Toda brackets, as indicated above. So far the work
has been done for a quite general cohomology theory; in §§6, 7 we specialise to the case of
R and R,. §7 contains the main theorem about the cases in which X and Y are spheres
and K is torsion-free. §8 contains the relationship between the invariants of §7 and the
dlassical Hopf invariant in the sense of Steenrod. §9 considers the case needed for Theorems
1.1, 1.3, in which X and Y are spheres but K is not torsion-free. In §10 we discuss the value
of our invariants on the image of J. In §11 we work out the general theory of §§4, 5 (about
Toda brackets) for the special cases which most concern us. In §§12 we prove Theorem 1.7
and discuss related matters; since the same machinery serves to discuss certain 2-primary
phenomena, we also prove Theorem 1.2 there. In §12 we also give a number of examples
and applications; the reader’s attention is particularly directed to these, since they provide
essential motivation.

Since drafting the body of this paper, I have become aware of Toda’s paper [19], which
has a considerable overlap with the present paper. 1 am very grateful to Toda for a letter
about his results.

Toda defines an invariant
CH"™*: 30, x(87") > Q/Z

which is presumably the same as the invariant e discussed in this paper. He also defines
an invariant CH,*"*2* which is presumably the same (up to a certain constant factor) as
the invariant e} discussed in this paper.

To give Toda proper credit for his priority, I offer the following concordance of results.
Corollary 7.7 of this paper is to be found in Toda’s paper, and is the essential step in the
proof of his Theorems 6.3, 6.5(i) and (ii) which give restrictions on the values that can be
taken by his invariants (compare 7.14, 7.15 of this paper). Proposition 7.20 of this paper is
Theorem 6.5 (iii) of [19]. Corollary 8.3 of this paper is Theorem 6.7 of [19]. The case
A = C of Theorem 11.1 of this paper is Theorem 6.4 of [19]. Theorem 12.11 of this paper
is contained in 6.8 of [19)].

§2. COFIBERINGS

As explained in the introduction, this paper will make much use of sequences of
cofiberings. We shall therefore devote this section to summarising some material about
cofibre sequences, following [15]. We need only deal with “good” spaces; for the applica-
tions, it would be sufficient to consider finite CW-complexes.

Let f: X —» Y be a map. We can construct from it a cofibering
! ]
X-Y-Yu,CX.

Here i is an injection map; and Y U, CX is the space obtained from Y by attaching CX,
the cone on X, using f as attaching map.
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Iterating this construction, we can construct

i J
Y+ (YU, CX)> (YU, CX)u,CY
and (setting Z = Y u, CX)

J k
Z-(Zu;CY)—>(Zu;CY)u;CZ.

Now the space (Y u, CX)u; CY is homotopy-equivalent to the suspension SX; and
similarly, the space (Z u; CY) u; CZ is homotopy-equivalent to SY. In order to avoid
errors of sign in what follows, it is desirable to use the “same” homotopy equivalence in
the two cases. If we do this, then the map

ki(Yu,CX)u;CY »(Zyu,CY)u,CZ
corresponds to
—-Sf:SX - SY.

(This is easy to check; or see [15, p. 309, Satz 4).) We shall therefore take the following as
our basic cofibre sequence.

it )

5o i s
XYYy, CX>8X— SY ...
This construction has various obvious properties, which we record for use later.

PROPOSITION 2.1. If f~ g, then we can construct the following homotopy-commutative
diagram, in which all the vertical arrows are homotopy equivalences.

~Sf

5o J
XYYy, CX->8X—> SY

I T

XYYy, CX »8SX—>SY

PROPOSITION 2.2. Given a commutative diagram

s
XY

hl . lk

X' Y
we can construct the following commutative diagram.

S/ i Jj -Sf
X>Y-> Yy, CX -»SX— SY

h«l I kl i l i Shl -Sf'Skl

XY Y u,.CX' -»SX'—s SY’

These obvious and elementary propositions are special cases of the more general
results proved in [15, pp. 311-316).

PROPOSITION 2.3. Given

5w
X-Y-2Z,
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we can construct the following commutative diagram.
-5f

s i j
X-Y> Yu,CX »8X-——>S8Y

I R B g

X2Z-Z U, CX>8SX—— SZ
fl [ ll i l i"s!l ~Sg 11
Yo Z—-+2Zu, CY>SY——SZ
This follows from two applications of Proposition 2.2.

PROPOSITION 2.4. For each r, we can construct the following homotopy-commutative
diagram, in which all the vertical arrows are homotopy equivalences.
Sri Mg
§'Y—— §(Yu ,CX) - Sty
1 v . (-1
F)
§Y —(SY) ug C(SX)—s STIX
This proposition is easy to check, provided we use the “reduced” cone and suspension.
The map (—1)" of S**! X arises as a permutation of the suspension coordinates.

§3. DEFINITION AND E: EMENTARY PROPERTIES OF THE INVARIANTS 4, ¢
In this section we shall define our basic invariants d and e. We shall also establish the
elementary properties of these invariants.

We shall suppose given a half-exact functor in the sense of [12]. For example, the
functor may be one component of a (reduced) extraordinary cohomology theory. More
precisely, k is to be a contravariant functor defined on (say) the category of finite CW-
complexes and homotopy classes of maps, and taking values in some abelian category
[14], say 4. If

i i
X-Y-Z
is a cofibre sequence, then
i* J*
k(X) e~ k(Y) —k(Z)
is to be an exact sequence in the abelian category 4. It follows that we may identify
k(X v Y) with the direct sum k(X) @ k(Y) in the category A4; see [12, p. 1].

Now suppose given a map f: X —» Y between (say) finite connected CW-complexes.

We can consider the induced homomorphism
I k(Y) > K(X).
If we take X = Y = S" and take k to be H'( ; Z), then the invariant /* gives us the degree

of f. We therefore regard
SEK(Y) - k(X)

as ‘“‘the degree of f, measured by k-theory”. We define
d(f) = f* € Hom(k(Y), k(X)).
Here Hom(M, N) means the set of maps from M to N in the abelian category A.
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The invariant e(f) will be defined when d(f) =0 and d(Sf) = 0. In this case we use
the map f: X = Y to start the following cofibre sequence.

s i J -5f
X>Y>YU,CX>SX—-SY

Since we assume that f* = 0 and (Sf)* = 0, the functor k yields the following short exact
sequence in the abelian category 4.

i* J*

0—k(Y)—k(Y U, CX)—k(SX)0
In an abelian category we can define Ext! by classifying short exact sequences; therefore
the short exact sequence above yields an element of
Ext'(k(Y), k(SX)).
We call this element e( /). The letter e stands for “extension’, and goes well with d.

For example, let us consider the case in which k = A*( ;Z,) and 4 is the category
of graded modules over the mod 2 Steenrod algebra. Let us take X = S™*""! v =§™
Given a map f: S™*"~! — S™, we are led to consider the following short exact sequence.

0e—A*S™; Z,)) —A*(S"u e™*"; Z,) = H*(S™*"; Z,) 0
As an extension of modules over the Steenrod algebra, this is completely determined by the

Steenrod square
Sq": H™(S™ U, e"* ", Z,) » H™ " (Sm U, et Z,).

We therefore recover Steenrod’s approach to the mod 2 Hopf invariant.

The invariant e(f) may thus be regarded as a “Steenrod—Hopf invariant” in which
ordinary cohomology has been replaced by k-theory.
We have just defined
d(f) € Ext°(k(Y), k(X))
(if we interpret Ext°(M, N) as meaning Hom(M, N)), and
e(f) e Ext(k(Y), k(SX)).
One would naturally hope to construct a third invariant, which should be defined when
suitable 4 and e invariants vanish, and should take values in
Ext®(k(Y), k(§2X)).
Similarly for a fourth invariant, and so on. However, we will not pursue this line of thought
any further here.

In later sections we will give examples and applications of the invariants 4 and e,
and develop the resources to do practical calculations with them. For the moment we con-
sider the elementary properties of these invariants.

PROPOSITION 3.1 (2). If f~ g, then d(f) = d(g).

(b) If f ~ g and e(f) is defined, the e(g) is defined and e(f) = e(g).
Proof. Part (a) is obvious. Part (b) is proved by applying the functor k to the diagram
given in Proposition 2.1.
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We now consider the situation in which we have two maps
5 e
X->Y->2Z
We aim to show that the invariants d and e send composition products (in homotopy) into
composition products, i.e. Yoneda products, in Ext groups.
PROPOSITION 3.2 (a). We have
d(gf) = d(f)d(g).
(b) If e(f) is defined then so is e(gf), and we have
e(gf) = e(f)d(g).
(c) If e(g) is defined then so is e(gf), and we have
e(gf) = d(Sf)e(g).
Here statements (b) and (c) use the pairing of Ext® and Ext! to Ext’.

Proof. All the statements about invariants d are obvious. For the rest, we apply the
functor k to the diagram given in Proposition 2.3, and we obtain the following commutative
diagram.

K(Y)e— k(Y U;CX) —k(SX)

y‘] 1

k(Z)e—KZ v, CX) —k(SX)

T e

KZ)—Kk(Zu,CY) —k(SY)
If e( f) is defined, it is represented by the top row; similarly for e(gf) and the middle row;
similarly for e(g) and the bottom row. By definition of the products in Ext, this shows that

egf)=e(f)-g*
e(gf) = (Sf)*-e(g)

in case (c). This completes the proof.

in case (b), and

For our next proposition, we assume that X is a co-H-space, for example, a suspension.
That is, we are provided with a map

AX>XvX

of type (1, 1). This allows us to define the sum of two (base-point-preserving) maps
fig:X->Y,

by definition, f + g is the composite

fve “

X—AvaX——>Yv Y- Y,
where u is a map of type (1, 1) in the dual sense.
PROPOSITION 3.3 (a). We have
d(f + g) = d(f) + d(g).
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(b) If e(f) and e(g) are defined then so is e(f + g), and
e(f+g)=e(f) + eg).

In part (b), the sum occurring on the right-hand side is, of course, the Baer sum in
Ext!.

Proof. All the statements about invariants d are obvious. For the rest, we may identify
k(Y v Y) with the direct sum k(Y) @ k(Y), and k(S(X v X)) with k(SX) @ k(SX). In this
way we can identify the sequence

KY v Y)—k(Y v Y)u,,,C(X v X)) —k(S(X v X))

with the direct sum of the sequences
k(Y)—k(Yu,;CX)«—k(SX)
KY)—k(Y u,CX)—k(SX).
That is: if e(f) and e(g) are defined, so is e(f v g), and it can be identified with the “external”
sum e(f) @ e(g). According to Proposition 3.2, we have
e f+9) = e(u(f v g)A)
= (SAY*e(f v g)u*
= (SA)*(e(f) @ (™.

But with our identifications,
(SAY*: k(SX) @ k(SX) - k(SX)
is a map of type (1, 1) in the category 4, and
H*k(Y) > k(Y) @ k(Y)
is a map of type (1, 1) in the dual sense. Thus the element
(SAY*(e(f) @ elg))u*
is the Baer sum of e(f) and e(g). This completes the proof.

We will now discuss the behaviour of our invariants under suspension. For this pur-
pose we shall suppose that for some integer r, k(S"X) is known as a function of k(X). For
example, when we take k(X) = KA X) [10, 11, 2}, we shall take r = 2; when we take k(X) =
Ri(X) we shall take r=8. If we took k(X)= H*(X;Z,) we could take r =1. More
formally, we shall suppose given a functor T, from the abelian category 4 to itself, which
preserves exact sequences; and we shall suppose given an isomorphism

k(S"X) = Tk(X)

natural for maps of X. We shall allow ourselves to identify k(S"X') and Tk(X) under this
isomorphism.

Since the functor T preserves exact sequences, it defines a function
T:Ext'(M, N) » Ext'(TM, TN).
This function is actually a homomorphism.
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PROPOSITION 3.4 (a). We have
d(s’f) = Td(f).

(b) If e(f) is defined, then so is e(S'f), and we have

e(ST) = (~1YTe(f).
Proof. All the statements about the invariant d are obvious. For the rest, we apply

the functor k to the diagram given in Proposition 2.4 and use the fact that kS = Tk.
We now define stable track groups by
Mapg(X, Y) = Dir Lim Map(S™X, S™Y).

We also define stabilised Hom groups in the abelian category A4 by iterating T and taking
direct limits; thus,
Homy(M, N) = Dir Lim Hom(T"M, T"N).

Similarly, we define stabilised Ext' groups by iterating the homomorphism (—1)'7 and
taking direct limits; thus,

Exti{(M, N) = Dir Lim Ext(T"M, T"N).

PROPOSITION 3.5 (a). The invariant d defines a homomorphism from Map( X, Y) to
Homg(k(Y), k(X)).

(b) The invariant e defines a homomorphism from the subgroup Ker d n Ker(dS) of
Mapg(X, Y) to Exty(k(Y), k(SX)).

This follows immediately from Propositions 3.1, 3.3, 3.4,

The pairing of Ext groups used in Proposition 3.2 are evidently compatible with the
operations T on Ext® and (—1)'T on Ext'; therefore these pairings pass to the limit. With
this interpretation, Proposition 3.2 continues to give the value of the invariants d, e on a
composite gf of stable homotopy classes.
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§12. EXAMPLES

In this section we will give various examples and illustrations of our general methods,
and prove certain results whose proof was deferred in earlier sections. To begin with, our
work is directed towards proving Theorem 1.7.

We can actually make Theorem 1.7 a little more complete. As in §1, let p be an odd
prime, let g:S%¢7! - §2¢"! be a map of degree p’, and let Y be the Moore space
Sy, e Thus R(Y) = Z,.

THEOREM 12.1. There is a map
A:ST"Y Y
(for suitable g) such that the image of
A*:RA(Y) > RA(S*Y)
is Z,. (where 1| £ 1 £ f), if and only if r is divisible by (p — 1)p* ™.
It is clear that this includes Theorem 1.7 (take ¢t = f). We will show how to deduce
Theorem 12.1 from Theorem 1.7.

First, suppose that there is a map 4 : S*Y — Y such that the image of 4* is Z,. Then
A* commutes with the operations ¥*, which are given in ¥ and S Y by the formulac
Yrx = kix, Wy = k1¥7x.
Therefore we have k**" = k? mod p'; so r is divisible by (p — 1)p* ™ *.
Secondly, suppose that r is divisible by (p — 1)p'~' and Theorem 1.7 is true. Set
Y’ = 827! U, €9, where k is a map of degree p*. Then by Theorem 1.7 there is a map
A’: SZrY/ - YI
inducing an isomorphism of K.. We have only to take 4 to be the composite
s2ri a4 i
SZ'Y———D SZ’YI_’ Y > Y
where i, j are obvious maps such that j*:R{(Y)—»KY’) is an epimorphism and
i*: R(Y")> EAY’) is a monomorphism.
This completes the deduction of Theorem 12.1 from Theorem 1.7. We proceed with
lemmas needed for the proof of Theorem 1.7. First we consider the cofibering

S
Sz-—x_’sz:.—l__,Sz-—xuf elu

252



(22)
where fis a map of degree m. If A = R, we assume that n is even; thus we shall certainly
have d;i =0, dp(Si) =0.

PROPOSITION 12.2. e,i is the class of the extension

02,2 1;— Z <0,
in which all the abelian groups have operations \W* defined by
Yy = k"x.

Proof. If we continue the cofibre sequence, it becomes
' b =7
Slu—lufebl_’ SZn__’ SZn;

we have only to apply K,.

For the next proposition, we suppose given a diagram of the following form,

SZn—l v eZn
/N
g2~ 1/ ’ - }21

(Here we have written S2*~! U, e*" instead of S?*~! U, e?", where fis a map of degree
m.) If A =R, we assume that n and g are even. Thus K (5% = Z and K,(§*""! u,, %)

= Z,; we can regard d,(G) as an integer mod m. We can also regard e,(g) as a rational
mod 1; since mg ~ 0, me,(g) is an integer mod m.

PROPOSITION 12.3. We have

d,(G) = —me,(g) mod m
or equivalently

1
eA(g)= — —n;dA(G) mod 1.

Proof. This proposition is a special case of Proposition 3.2 (b), which states that
e(Gi) = e(i) d(G).

The element e(i) has been given in Proposition 12.2; one has only to compute the product
(i) d(G), which is an easy exercise in homological algebra.

LEMMA 12.4. Let p be an odd prime,m = p/, and r = (p — 1)p’. Then there is an element
« € n3,_, satisfying the following conditions.

(i) ma=0.
(i) eca = — l
m
(iii) The Toda bracket {m, a, m} is zero mod mns3,.

Proof. For f=1 the result is easy; we have only to take « to be an element of Hopf
invariant one mod p in n§,_3. Then (i), (ii) are given by Corollary 8.4 and (iii) follows
from the fact that the p-component of 73, is zero.
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For any f we can take « to be a suitable element in Im J, using Theorem 1.5 or 1.6 to
obtain (i), (ii). Condition (iii) follows from the fact that {m, «, m} is an element of order 2
(18, p.26 (2.4) (i), p.33 (3.9) ()].

Lemma 12.4 supplies the data for the following lemma, which we shall also use with
m=2.

LemMA 12.5. Suppose given a € n3,_, and m € Z such that
(i) ma =0,
1
(ii) eca = — m’
(iii} {m, a, m} = 0 mod mn3,.
Then for suitably large q there exist maps A which make the following diagram homotopy-
commutative; and for any such A we have d{(A) = 1.

A
S2¢+2r—l Um82q+2r - SZq—l Un eZq

: L,
SZq+2r—l - S
Proof. Conditions (i), (iii) enable one to construct the diagram. By Proposition 12.3
and condition (ii) we have d(j4) = 1. Hence d(A4) = 1.
Theorem 1.7 follows immediately from Lemmas 12.4, 12.5. Since 4 induces an iso-
morphism of K, so does the composite

A.STA.SYA. .. S¥E-4.87y LY,
Indeed we have
d{A.S¥A.SYA4. .. S¥e- V) =,

Therefore this composite is essential for every s.
Under the assumptions of Lemma 12.5, we construct a map

a’:52q+2rs—l - SZq
by the following diagram.

A-S¥¥Q..Sria-1)4

29+ 2rs—1 2q+ 2rs 2¢—1 2
S Upn€ 1 — sy 8 U, € 7
LA
SZq+2n-1 - Slq

We have a, =a. The map o, has order dividing m, since it can be extended over
S2+2rs-1, p2e+21 The maps a, satisfy the equation

(12.6) %er € {a, m, o}
The case in which m is an odd prime p and r = p — | has been studied by Toda [16, 17].

PROPOSITION 12.7. Under the assumptions of Lemma 12.5, the maps a, are all essential;
indeed we have

1
= —— d 1.
efa, mo
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This improves and generalises a result of Toda [17]. Presumably the present proof is
related to Toda’s proof; however, it is hoped that the presentation given here may be
found more conceptual.

Proofs. (i) Apply Proposition 12.3 to the diagram which defines «,. (ii) Alternatively,
apply Theorem 11.1 to equation (12.6) and use induction.

EXAMPLE 12.8. We note that in [16, 17] Toda’s elements o, depend on the choice of a,,
which Toda does not fix; similarly, there is a choice for his element «,. However, we may take
the choices so that

1 1
ec(r)=—=, edw,)=—=.
4 p P pz

Then the coefficient 6 in Corollary 11.6 explains the coefficients which arise in Toda’s formulae
for

{1H 13’ p} and {17,p’ as’ p}
[16, Theorem 4.17 (ii)].

We now pass on to study 2-primary phenomena. To begin with we prove the following
result.
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THEOREM 12.13. For each s > O there is an element g, of order 2 in n3, ., such that
ecltts; +1) = Y mod 1.
Proof. Let « be the element of order 2 in n5. Since ej : 5 — Z,,40 is an isomorphism,

we have ed(®) = 4 mod 1. Also, by a delicate result of Toda [18, p.31 Corollary 3.7] we
have

{2,0,2} = an mod 2
=0 mod 2,
since « is divisible by 2 and 2# = 0. Thus we can apply Lemma 12.5 to construct a map 4.

Now we have the following diagram.
A-5%4-.-+58(s-1)A
SZq+8:-l UZ eZq+85 - SZq—l UZ eZq
/ N\
i j/ i \i
/ \,
4 n N
SZq+8:—l - SZq SZq—l - SZq—Z
We define uq, ., to be the composite
§.4.8%4....88%°4
We have u, =#n. The map ug,,, has order dividing 2, since it can be extended over
S2at8s-1 (, 024+85 Gince e(n7) = 4 mod 1, Proposition 12.3 shows that dc(if) = 1 mod 2.
Hence
dJif.A.S®A4. .. S*¢" VA =1  mod 2.

A second application of Proposition 12.3 now yields

ecitas+1) =% mod 1.
Alternatively, we can obtain the same result by applying Theorem 11.1 to the equation

Hgs+1 € {”r 29 as}a
in which ec(2,) = 4 mod 1 by Proposition 12.7.
Proof of Theorem 7.18. Suppose r =1 mod 8. Then by Theorem 12.13 the homo-
morphism
ec:m -+ Z,
is an epimorphism. But we also have
dp:n - 2Z,
and Ker dp = Ker ¢; by Lemma 7.21. Therefore dy = e.. This proves Theorem 7.18,
We have just shown that
drpigs+1 # 0.
(It is possible to show this directly from the construction of ug,,,, but this is unnecessary.)
PROPOSITION 12.14. If r=1mod8 and s =1 mod8 then the composite upu, is non-
zero; indeed

This proposition generalises the behaviour of the composite sy, The proof is
immediate.
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Proof of Theorem 7.2. Let us define pg 4, to be one of the compositis conideret in
Proposition 12.14, for example, nug,,;. Then we have shown that for » = 1, 2 muut ® wint
r > 0 we have dpu, # 0. Thus dy is an epimorphism; and since g, is of otder 2, n} splits an
a direct sum Z, + Ker di, where the subgroup Z, is generated by u,.

EXAMPLE 12.15. Suppose that 8 e n3,_, is an element such that m(4t)e () iv ovdd
Then for r = 1, 2 mod 8 the composite Oy, is essential; indeed
er(Bp,) # 0.
Proof. By Theorem 3.2 (c) we have
er(Bu,) = dplpJex(9).
Let us use the notation of §9; then e,(6) is a generator of the 2-component of Extg(M, N)

and the homomorphism dg(y,}) may be identified with the quotient map N - N'. So accor-
ding to the discussion in §9, dx(y,) . ex(8) represents a generator of Extg(M, N').

This example provides a second proof for Theorem 9.5. In fact, let ¥ be a generator
for ng,_,(SO) (u>0). Then the generators for my,(SO), ng, . (SO) can be written as
composites y7, ynn; and we have

JOym) = J(ym
Jymm) = J(yynn.
Thus Theorem 9.5 follows from Example 12.15.
EXAMPLE 12.16. If r = 1 mod 8 then {2, i,, 2} is non-zero; indeed dp{2, p,, 2} # 0.

This example generalises the behaviour of {2, n, 2}. The reader will find that it is an
easy application of Theorem 5.3 (i). Alternatively, of course, one can quote [18, p.31
Corollary 3.7] to show that {2, u,, 2} = u,n mod 2 and use Proposition 12.14.

PROPOSITION 12.17. If r = 2mod8 and s = 1 mod 8 then the composition y,u, is non-
zero; indeed

er(p ) =1 mod 1.
This proposition generalises the behaviour of the composite nin.
Proof. Let
f:81 L 8% g:S%" — 8%
be maps representing u,, u,, where 29=0mod 8, 2t =2mod 8, 2n — 1 =3 mod 8. We
have to consider the invariant ex(f). We have the following diagram.
Z,= KR(SZt) — Kx(sz' Uys 92")‘— RR(SZH) =Z
epi p iso
Z=RdS") —R(S"u e’ —K(S") =Z
Let &, n be generators in K (S o e?"). Then since e f) = 4 mod | we have (for a suitable
choice of ¢)
Y = (-1 ¢+ H(=D" = (=1
=—{+n
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Now in Kx(S* U, €*") we have r¥ ! = r; thus we have 2r¢ = rn. Thus eg(f) is the non-
trivial extension

0—2Z,«2 4—2— Z+—0
in which all the groups are given operations W* by the formula ¥*x = k"x.
We must now compute the product eg(f) dg(g), where
d(9): Re(S*) —» K(S*)

is the epimorphism Z —» Z,. We easily find that eg(f) dg(g) is the extension corresponding
to the rational 4 mod 1.

ProrosiTiON 12.18. If r=1mod8 and s=1mod8 then any representative of the
Toda bracket {ii,, 2, p,} is an element of order 4; indeed ex{p,, 2, u,} = % mod .

This proposition generalises the behaviour of {n, 2, n}.

Proof. We have just shown that the indeterminacy of {g,, 2, u,} consists at least of
the integers 4 mod 1. By Theorem 11.1 we have

ec{tty, 2, 1} = —4.2.4 mod 1
=1 mod 1.

By Proposition 7.14 this is equivalent to

er{ty, 2,1} =% mod i
On the other hand, we have

2{p, 2, u} = {2, 4, 2}p, mod 0.

This actually gives nu, u,; but at all events it is an element of order 2 at most, so {u,, 2, 11,}
has order dividing 4. This completes the proof.
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The next piece is a summary on complex cobordism,

written by me especially for the present work.
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A SUMMARY ON COMPLEX COBORDISM

J. F. Adams

The subject of complex cobordism has two aspects: a
geometrical side, on which it links up with the theory of complex
manifolds, and a homotopy-theoretic side, on which it links up
with generalised homology and cohomology theories and the study
of spectra. I begin by sketching this. (Afterwards I will present
the calculation of 7, (MU), and finish by sketching some topics from
the further development of the subject. )

Let Min and Mrzn be two smooth manifolds, of dimension
m, compact, without boundary and both of the same sort: that is,
both non-oriented, or both oriented, or both with whatever extra
structure is to be considered. Then we say that M™ and M™ are
cobordant if there is a smooth manifold Wm+1 of dimension i
m + 1, compact, with boundary, and of the same sort, such that
the boundary of Wm+1 is the disjoint union of Min and Mrzn
Here the notion of 'boundary' is taken in the sense appropriate to
manifolds of the sort considered, so that we include a condition on
any extra structure we may have. For example, if we are working
with oriented manifolds, then we ask that the boundary of the

orientation class on Wm+1 should be plus the orientation class on

Mrzn’ minus the orientation class on Mrln Similarly for other
forms of extra structure. Cobordism is an equivalence relation,
and divides m-manifolds of the sort considered into equivalence
classes. The set of equivalence classes becomes an abelian group

if we use the disjoint union of manifolds as the group operation.
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In particular, le¢ M™ be a smooth manifold, compact and
without boundary. We will say that it is weakly almost-complex,
or stably almost-complex, if it can be embedded in a sphere
§™F2M ot sufficiently high dimension with a normal bundle which
is a U(n)-bundle. (It is also possible to say this in terms of the
tangent bundle of Mm, but the definition given is the most basic.)
In terms of such manifolds we define the complex cobordism group
Qg These groups make up a graded ring if we use the Cartesian
product of manifolds as the product operation. (This also happens
with the other sorts of 'extra structure' usually considered. )

We may say that it is difficult to classify manifolds into
isomorphism classes because there are so many different isomor-
phism classes; cobordism is a cruder equivalence relation than
isomorphism, so that the cobordism classes are larger than the
isomorphism classes, but there are fewer of them; for many
purposes it is sufficient to know the cruder classification into
cobordism classes, and therefore the calculation of cobordism
groups becomes important.

The fundamental step in the calculation of cobordism groups
is the introduction of Thom complexes, as in the fundamental paper
of Thom ('Quelques propriétés globales de variétés différentiables’,
Comment. Math. Helvetici 28 (1954), 17-86). Let ¢ be a U(n)-
bundle over a CW-complex X. Let E be the associated bundle
whose fibre is the unit disc D2n in complex n-space Cn; let
E 0 be its boundalgl,_ 1that is,nthe associated bundle whose fibre is
the unit sphere S in C. Then the Thom complex M(%) is
the quotient space E /Eo’ Alternatively, let V be the associated
bundle whose fibre is the sphere c™u () and let Vw be the
section at «=; then M(%) is the quotient space V/V o In
particular, let §n be the universal U(n)-bundle over BU(n);
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then MUn is defined to be M(&n).
The fundamental fact, then, is that we have an isomorphism

Q= lim 7 1oy (MU .
m L, mt2n n

This isomorphism allows one to calculate the groups Qg by
applying homotopy-theory, following Milnor and Novikov. (See
Milnor, 'On the cobordism ring $£* and a complex analogue’,
Amer. Jour. Math. 82 (1960), 505-521; this paper by Milnor is
highly recommended. See also Thom, 'Travaux de Milnor sur le
cobordisme', Seminaire Bourbaki no. 180, 1958/59, and Novikov,
'Some problems in the topology of manifolds connected with the
theory of Thom spaces', Doklady Akad. Nauk SSSR 132 (1960),

1031-1034.) However, the notation lim implies that we are
n-—~o

given both the groups = (MUn) and certain homomorphisms

between them; we have rr?;z;et defined these homomorphisms, so
we must return to the details.

Over the space BU(n) X BU(m) there is the external
Whitney sum §n X §m. This bundle admits a classifying map to
gn+m
M(§n+m). But we can check that the Thom complex M(gnx gm) is
homeomorphic to the 'smash' product M(gn) A~ M(Em), where

XAY = XXY /XVvY; sowe have a product map

, and of course this induces a map from M(§n>< §m) to

MU ~ MU _ - MU .
n m n+m

Also we have a map
i

s?— MU,
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given by the injection of one fibre; we we can construct

S2 AMU i—/—ll MU AMU__ —= MU
m 1 m m+l°’
These maps make the sequence of spaces MUn into a spectrum
MU. The spectrum MU is a ring-spectrum, because of the
product maps constructed above.
Let us now return to the geometrical situation. Take a
manifold M™ embedded in Sm+2n

is a U(n)-bundle. Then we have a classifying map from v to

with normal bundle v which

§n, and this induces a map of Thom complexes from M(v) to
M(¢ ). But M(») is cbtained from the sphere s+ o taking

the complement of a tubular neighbourhood of M™ and identifying
m+2n

- MUn'
This is the classical Pontryagin- Thom construction, and it is this

that complement to a point. So we get a map S

construction which induces the isomorphism

o

U .
Qm—> lim nm+2n(MUn) = nm(MU) .

n—«

This isomorphism preserves the products.

So we see that the homotopy groups of the spectrum MU
admit a geometrical interpretation. As a matter of fact the homology
theory determined by the spectrum MU (see paper no. 13) also
admits a geometrical interpretation. It is called complex bordism.
Suppose given a space X; to construct MUm(X) we take maps
£:M™ ~ X, where M™ runs over the stably almost-complex mani-
folds, and classify these maps into suitable equivalence classes.

The process is faintly reminiscent of the way in which one constructs
singular homology by considering maps f 10 = X See Atiyah,
'Bardism and cobordism', Proc. Camb. Phil. Soc. 57 (1961),
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200-208; also Conner and Floyd (1).

Similarly, the Thom spectrum MU gives rise to a cohom-
ology functor MU*(X) or QG(X), and this is called complex
cobordism.

Of course, in order to make use of a generalised homology
or cohomology functor one has to know the coefficient groups, and
so we are forced back to computing the homotopy ring 7, (MU) of
the spectrum MU. The resuilt is as follows.

Theorem 1 (Milnor, Novikov). 7, ,(MU) is a polynomial

ring (over Z) on generators of dimension 2, 4, 6, 8, ... .

Let Q be the rationals; then it is certainly clear that
7, (MU) ® Q is a polynomial ring over Q on generators of dimen-

sions 2, 4, 6, 8, ...; for we have

7,(MU) ® Q= H,(MU) ® Q,
as may be seen from Serre's C-theory (§8); and we may suppose
that H,(MU) is known. To show that 7, (MU) has no torsion, one

may use the following spectral sequence, which is due to the present

writer (see §10).

Lemma 2. There is a spectral sequence

5,t .
Ext ), (H*(MU; Zp), Zp) = nt_s(MU) .

S

Here p is supposed to be a prime; A is the Steenrod
algebra of operations on mod p cohomology; and H*(MU; Zp) and
Zp are considered as modules over A. Of course the validity of
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the lemma is not restricted to the spectrum MU; but in this case
the spectral sequence is a spectral sequence of rings; all the
products arise from the fact that MU is a ring-spectrum.

The ring 7,(MU) has a unit element 1 (represented by the
point considered as a 0-manifold, or by the injection of a fibre
considered as a map S2n - MUn). The element pl e no(MU) has
filtration 1 in the spectral sequence; it defines an element {p1}
in Ell,’ ! for all r.

The calculation of the Ez-term of the spectral sequence is
purely computational, and we present the answer.

Lemma 3. Ext5 Y (MU; Z), Z;) is a polynomial

algebra over Zp on generators of the following bidegrees.

(i) s=0, t=2n whenever n> 0 and n+1 is nota power
of .

(ii) s=1, t= 2pf -1 for each f = 0, the generator for f =0

being {pl}.
Since E“:" t is zero when t - s is odd, all the differentials
in the spectral sequence are zero, and the spectral sequence is

trivial.

Corollary 4. The torsion subgroup of 7 (MU) is zero.

Sketch proof. Multiplication by {pl} is mono on E:*
(since {p 1} is one of the polynomial generators), therefore on
E%*; therefore multiplication by p is mono on 7,.(MU). This
holds for each p.
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Milnor's published proof of Corollary 4 is slightly different.
He considers 'homotopy with coefficients’, defined in terms of
maps from Y to MU, where Y is the complex st Upe2 in which
the attaching map is of degree p. There is a spectral sequence
similar to that of Lemma 2, which is again trivial and shows that
[Y, MU]r =0 if r is odd. I there were any p-torsion in
m *(MU), then an obvious exact sequence (the 'universal coefficient
theorem for homotopy with coefficients') would show that there
were non-zero elements in [Y, MU], in two consecutive dimen-

sions - a contradiction.

Corollary 5. #,(MU) ® Zp is a polynomial algebra over

Zp on generators of dimension 2, 4, 6, 8, ... .

It is easy to believe that this follows from lemma 3, since
the effect of tensoring with Zp is simply to identify the element
pl with zero. The precise proof, however, requires the following
technical lemma on the convergence of the spectral sequence (or
at least the special case f = 1).

Lemma 6. Given q and f, there exists s = s(q, )

such that every element x of filtration s in nq(MU) has the

form x=pfy for some y in uq(MU).

The validity of this lemma is not restricted to the spectrum
MU; it is a general lemma. It may be proved by the argument
given in Comment. Math. Helv. 32 (1958), 191-192,

(I remark at this point that I owe John Milnor an apology.
He once asked me for a lemma in the same direction as lemma 6,

but I failed to get my thoughts clear enough to provide it at that
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time. I assume that Milnor had in mind a line of argument similar
to that presented here.)

We now introduce a lemma from pure algebra.

Lemma 7. Let R, be a graded anticommutative ring

with unit, such that Rq is a finitely-generated abelian group for

each q, and such that for each prime p, R, ® Zp is a polynomial

algebra over Zp on generators of dimension 2, 4, 6, 8, ... .

Then R, is a polynomial algebra over Z on generators of dimen-

sion 2, 4, 6, 8, ... .

In this lemma, the particular dimensions of the generators
are irrelevant; all that matters is that the dimensions of the
generators should be the same for all p. The proof is easy.

We know from Serre's C-theory (§8) that TTq(MU) is
finitely-generated for each q. Solemma 7 applies to R, =7, (MU);
this completes the proof of Theorem 1.

At the risk of increasing the level of sophistication, and
certainly of adding material I do not think compulsory for all
students, I add a few words about the further development of the
subject.

In general, if we are asked to compute a ring, it is not
good enough just to know that it is a polynomial algebra; we would
like to know definite elements which provide generators. It is easy
to name generators for 7 (MU) ® Q geometrically; the complex
projective spaces cP” will do. Unfortunately, they do not provide
generators for = (MU); for example, in 1r6(MU) there is an
element which in terms of projective spaces can only be written as
%(CP3 - (CP1)3). No canonical choice of polynomial generators

for n,(MU) is yet known to me.
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However, Milnor showed that it is possible to obtain genera

tors by taking Z-linear combinations -of cert.ain manifolds H iy
To construct I-Ii i one takes in CP' x CP! the subset of pairs

t ]
((w LA Wi)’ (zo, z o zj)) such that

0’ URE

woZ, + w.zZ, +... +wkzk= 0,
where k = min(i, j). The manifold Hi,j is a 'hypersurface of
type (1, 1)

The real reason why generators can be obtained in this
way is linked with the theory of 'formal groups'. The study of
formal groups may be approached through an analogy. Let G be
a commutative real Lie group of dimension 1; and let us choose a
chart round the identity e in which e corresponds to the real

number 0. Then the product in G may be given by a power-series

pr, yy=x+y+ I axy;
j,j=1 Y

this power-series will be convergent for x and y sufficiently close

to 0, and will have properties such as
ux, y) = ply, x)
ux, u(y, z)) = wux, y), 2).

A 'formal product' is a formal power-series

wx, y)=x+y+ 2 ai.xly]
i,j=1 Y

having the same formal properties; but now the coefficients a,
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are supposed to lie in some abstract ring R.

The connection between cobordism and the theory of 'formal
groups' was observed by S. P. Novikov (The methods of algebraic
topology from the viewpoint of cobordism theories, Izvestiya Akad.
Nauk SSSR 31 (1967), 855-951) and exploited by D. Quillen (to
be published). Briefly, the Tl:oom complex MU1 is equivalent to
complex projective space CP . This equivalence defines an
element w in the cobordism group MUZ(CPOO). The cobordism
ring MU*(CPw) is a ring of formal power-series, in one variable
w, over n (MU) as the ring of coefficients. Similarly,

MU"‘(CP‘,o x CP°°) is a ring of formal power-series over , (MU)
on two feneratgrs, w, and @, induced from :) by the projection
of CP X CP ontoits two factors. Now CP is an H-space;

we have a product map
=] -] -]
g:CP xCP -=CP .

Therefore we can form the element g*w in MUz(CPwXCPoo),

and it can be written as a formal power-series

1

grw = w, + w, + y jZZ laij w, W
Here each coefficient ai]. lies in ”2(i+j-1)(MU)‘ This formal
power-series is a formal product.

It can be shown that the ring =, (MU) is generated by the
coefficients ai]. which arise in this power-series. Moreover, the
proof can be made 'clean’', at least in the sense that it relies
mainly on theory and does not involve computations except such
as arise inevitably from the general theory. (To sketch this proof
would involve more about formal groups than seems appropriate

here. )
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We have said that the elements 35 generate 7 (MU). But
the element ai]. coincides with Hij’ up to sign, and modulo
decomposable elements; therefore the elements Hij generate
7, (MU). (Actually the last assertion about aij is true only if we
exclude low values of i and low values of j; but these can be
taken into account separately. )

We turn next to summarise the connection between complex
bordism or cobordism and complex K-theory. Here the first
theorem is that of Conner and Floyd (2). As in 'Lectures on
generalised cohomology', Springer-Verlag, Lecture Notes in
Mathematics no. 99, p. 38, we state it for the covariant functors
to avoid finiteness assumptions on X. The theorem says that the

complex bordism of X determines its complex K-homology.

Theorem 8. We have

BU,(X) = MU, (X) ® 7,(BU) .

7, (MU)

For further details and proof, see the references cited
above.

The second theorem in this direction is that of Hattori and
Stong (Hattori, 'Integral characteristic numbers for weakly almost
complex manifolds', Topology 5 (1966), 259-280; Stong, 'Relations
among characteristic numbers I', Topology 4 (1965), 267-281).
Recall that it follows from Corollary 4 that the Hurewicz homomor-

phism
h:n (MU) = H, (MU)

is mono. The result was originally conceived as a characterisation

271



(23)
of the image of h, and as a tool for practical calculation; and
indeed it is effective as such. However, the most elegant formu-

lation has a rather theoretical appearance; it goes as follows.

Theorem 9. The Hurewicz homomorphism in complex

K-homology,
k : 7, (MU)— BU, (MU)

is the injection of a direct summand.

For further details and proof, see the reference to Hattori
cited above.

If one wishes to describe the image of k, that can also be
done. It is shown in 'Lectures on generalised cohomology’,
Springer-Verlag, Lecture Notes in Mathematics no. 99, pp. 56-76,
that BU,(MU) is a comodule with respect to the coalgebra
BU,(BU), so that we have a structure map

¥ : BU, (MU)—BU,_(BU) ® BU_(MU) .

n,(BU)

An element x in BU*(MU) is said to be 'primitive' if Yyx=1®8x.
The set of primitive elements is written P(BU,(MU)).

Proposition 10. The Hurewicz homomorphism in complex

K-homology gives an isomorphism

K : n,(MU)——:—> P(BU, (MU)) .

It is easy to deduce this from Theorem 9.
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Finally, the algebra of cohomology operations on the
cohomology functor MU*( ) has been completely determined by
Novikov (Izvestiya Akad. Nauk SSSR 31 (1967), 855-951). The
method may be explained as follows. We have to compute
MU*(MU). Now in ordinary cohomology we have a '"Thom isomor-

phism'
Hq(BU(n))—»ﬁq”“(MUn) .

Similarly, here we have an isomorphism

o~

MU*(BU) MU*(MU) .

But to compute MU*(BU) amounts to studying characteristic classes,

definex on unitary bundles, with values in MU*( ); and these have

been studied by Conner and Floyd (2). The result follows.
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The final piece is an excellent survey article by Novikov.
As with many other survey articles, the reader’s first object in
reading it should be to gain a general understanding of what is

going on rather than a grasp of the technical details behind each
sentence,

274



24

NEW IDEAS IN ALGEBRAIC TOPOLOGY
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Introduction

In recent years there has been a widespread development in topology of
the so-called generalized homology theories. Of these perhaps the most
striking are K-theory and the bordism and cobordism theories. The term
homology theory is used here, because these objects, often very different
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in their geometric meaning, share many of the properties of ordinary
homology and cohomology, the analogy being extremely useful in solving
concrete problems. The K-functor, which arose in algebraic geometry in the
well-known work of Grothendieck, has been successfully applied by Atiyah
and Hirzebruch to differential topology and has led quickly to the solu-
tion of a number of delicate problems.

Among the results obtained strictly with the help of K-theory the
work of Atiyah and Singer on the problem of the index of elliptic operators
and of Adams on vector fields on spheres and the Whitehead J-homomorphism
are outstanding. More or less influenced by the K-functor other functors
have sppeared, with importance for topology — the J-functor, bordism
theories and Milnor’s microbundle k- functor. These have thrown new light
on old results and have led to some new ones. Note, for example, the
results of Milnor, Mazur, Hirsch, Novikov and others on the problem of the
relation between smooth and combinatorial manifolds, based on Milnor’s
kpp-functor, and the theorems of Browder and Novikov on the tangent
bundles of manifolds of the same homotopy type, Successfully treated with
the help of Atiyah’s J-functor. Particularly interesting applications of
bordism theory have been obtained by a number of authors (Conner and Floyd,
Brown and Peterson, Lashof and Rothenberg).

In this survey I shall try roughly to describe this work, though the
account will be very far from being complete. In order to describe recent
results I shall of course have to devote a large part of the survey to
presenting material that is more or less classical (and is in any case no
longer new). This material is collected in the first two chapters’.

Chapter |

CLASSICAL CONCEPTS AND RESULTS

To begin with we recall the very well-known concepts of fibre bundle,
vector bundle, etc. We shall not give strict definitions, but confine our-
selves to the intuitive ideas.

§1. The concept of a fibre bundle

Let X be a space, the base, and to each point x € X let there be
associated @ space F,, the fibre, such that in a good topology the set
U Fr = E, the space, is projected continuously onto X, each point of the
x

fibre F, being mapped to the corresponding point x. To each path g: I » X,
where I is the interval from 0 to 1, there corresponds a map

N(g) : Fyy » Fy,, where xo = g(0) and x; = g(1). The map A(g) has to depend
continuously on the path g and satisfy the following conditions:

1 The distribution of the literature over the various sections is indicated on

p. B0/61,
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8) Ag ') = Mg)~?, where g™ is the inverse path,?

b) A(fg) = M) A(g), where fg denotes the composition of paths.

If we suppose that all the fibres F, are homeomorphic and that, for
each closed path g, )\(g) is a homeomorphism belonging to some subgroup G
of the group of homeomorphisms of the ‘“standard fibre” F, then the group
G is called the structure group of the bundle. These concepts standard
fibre and structure group can be defined rigorously. Thus, the concept of
fibre bundle includes the “space” E, the “base” X, the projection
p:E- X, the “fibre” F, homeomorphic to p~!(x), x € X, and the group G.

We illustrate this by examples.

EXAMPLE 1. The line R is projected onto the circle S*, consisting of
all complex numbers |z| = 1, where p:o - ei?

Here E = R, X = S*, F is the integers, G the group of “translations®”
of the integers gpo:m-» m + n,

EXAMPLE 2, The sphere is projected onto the real projective space RP"
so that a single point x € RP® is a pair of points of the sphere - vectors
@ and -a if the sphere is given by the equation £x = 1. Here E = S",

X = RP®, the fibre F is a pair of points and G is a group of order 2.

EXAMPLE 3. The M6bius band Q is a skew product with base the circle
X = S, fibre the interval from -1 to 1 and E = Q. The group G is of
order 2, because the fibre - the interval - when taken round a contour -
the base — is mapped to itself by reflection with respect to zero.

EXAMPLE 4. If H is a Lie group and G a closed subgroup, then we ob-
tain a fibre bundle by setting X = H/G, E= H and G = G, with p the natural
projection H - H/G onto the space of cosets. For example, if H is the
group of rotations of three-dimensional space SO; and G the group of
rotations of a plane, then H/G is the sphere S? and we have a fibration
p:S0;+ S? with fibre S = SO,. There are a great number of fibre
bundles of this type.

EXAMPLE 5. A Riemannian metric induces on a closed manifold the con-
cept of the parallel “transport” of a vector along a path. This shows
that the tangent vectors form a fibre bundle (the *“tangent bundle’” ), the
base being the manifold itself and the fibre all the tangent vectors at a
point (a Euclidean space). The group G is SO, if there are no paths
changing orientation ( “the manifold is oriented” ) and O, otherwise.

Such a fibre bundle, with fibre R" and group G = 0, or SO, , we shall
call a “real vector bundle”.

EXAMPLE 6. If a manifold M" is smoothly embedded in o manifold W**,
then a neighbourhood E of it in vk may be fibred by normal balls. The
neighbourhood is then also a fibre bundle with fibre Dk (a ball) or R".
group SO, or O and base M". This also is a vector bundle ( “the normal
bundle ” ).

The concept of a “complex vector bundle” with fibre C" and group U,
or SU, is introduced in a similar way.

It is useful to relate to any fibre bundle its “ associated” principal
bundle, a principal bundle being one in which the fibre coincides with the

1 If the maps A are not homeomorphisms, but only homotopy equivalences, then
a) has to be weakened by postulating only that )\(e) = 1, where e is the con-
stant path.
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group G and all the transformations are right translations of the group.

A principal bundle can be described as follows: the group G acts with-
out fixed points on the space E, the base X is the set of orbits E/G and
the projection E - E/G is the natural onme.

The fact is that an arbitrary fibre bundle with arbitrary fibre may be
uniquely defined by the choice of the maps A(f) € G for the closed paths f
from a single point. One can therefore by this same choice construct a
principal fibre bundle with the same base X, but with fibre G, a transforma-
tion of the fibre being replaced by the translation of G induced by the
same element A(f). One can also change one fibre into another if the same
group acts on it.

§2. A general description of fibre bundles

|. Bundle maps. If two bundles n, = (E,, X,, F, G) and
Ne = (E;, X5, F, G) are given with common group and fibre, then a map
E, » E, is said to be a bundle map if it sends fibres into fibres homeo-
morphically and if it commutes with the action of G on F. The bundle map
induces a map X; » X,.

2. Equivalence of bundles. Two bundles with the same base X, fibre F
and group G are said to be equal if there is a bundle map of the one to
the other such that the induced map of the base is the identity.

3. |Induced bundles. If one has a bundle n= (E, X, F, G), a space Y
and amap f:Y » X, then over Y there is a unique bundle *‘‘induced by f”
with the same fibre and group and with base Y, mapped to the first bundle
7 and including on the base the map f:Y » X. This bundle is denoted by
f*n. That is, to a bundle over X there uniquely corresponds a bundle over
Y (bundles are mapped contravariantly just as functions are).

4. Examples. EXAMPLE 1. If a bundle over X is equivalent to a
“trivial ” bundle, that is, is such that G = e and E = X x F, then the
same is true of any bundle induced by it — this implies that an induced
bundle f*n cannot be more complicated than the the original one.

EXAMPLE 2. Let M* be a manifold embedded in R"**. Consider the mani-
fold Gg,n of k-planes in Rt passing through the origin. Over Gi, , (as
base) there is a fibre bundle n with fibre R®: to be precise, the fibre
over x € G, , is the plane x itself, of dimension k. The group G here is Op.
One can translate the tangent plane at a point m € M* to the origin. We get
amap f: [T Gp, n; the tangent bundle to Mk. clearly, is f*n, where n is
the bundle over Gg, n.

One may assume here that n is very large. There is an important classi-
fying

THEOREM . Every fibre bundle with finite-dimensional base X and
group O is induced by a map X+ Gp, n, unique up to homotopy, provided n
is sufficiently large.

The set of fibre bundles over X with group Op is therefore identical
with the set of homotopy classes of maps of X to Gi,, (denoted by
(X, Gy, n)).

Becaune of this theorem the bundle n constructed in Example 2 is said
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to be ‘“universal ”. Such universal bundles can also be constructed in a
similar way for G = SO, (one has to take oriented k-planes in R"**) and
for G = U, (complex k-planes in C“'k). It is easy to construct similar
universal bundles for an arbitrary Lie group G.

The standard notation for the base of a universal bundle for a group
G is BG. For example G, , = BO, for n infinitely large.

In the sequel we shall only be concerned with vector bundles, real or
complex.

§3. Operations on fibre bundles

I. Sum (Whitney). Let n, and n, be two vector bundles with bases X,
and X,. Then over X, x X, there is a bundle n, x n,, whose fibre is the
direct product of the fibres of n, and n,. If X, = X, = X, then there is a
“diagonal map” A: X+ X x X, where A(x) = (x, x). Set

M@ N =A4%(n; X ).

We get a bundle ny@ n, over X, the “sum™ of the bundles n, and n, with
common base X.

2. Product (tensor). Let m, and N, be two bundles with common base X.
Then over X x X there is a bundle m@ N, whose fibre is the tensor
product of the fibres (over R, if they are real, or over C if they are
complex bundles). Set, as before,

BRMLR=A"(N® M2);

N1® n. is a bundle with the same base space X.
It is easy to prove bilinearity:

MIMDn)=(m® ) D (ny @ ).

The unit for tensor multiplication is the trivial (line) bundle with
one-dimensional fibre R or C.

3. Representation of the structure group. Let G be the structure
group of the bundle n with fibre F and base X and for simplicity let
h:G->Oyor h:G-» Uy be a faithful orthogonal or unitary representation.
By the method indicated above one can *change” the fibre F to Ry or Cy
by means of the representation h. We get a bundle denoted by h. The follow-
ing cases are the most interesting:

1) h is the natural inclusion Oy C Uy ( “complexification”, denoted
by ¢).

2) h is the natural inclusion Uy C O,y (““realization”, denoted by
r).

3) If any h: GCOyor G CUy is given, we can take its “‘exterior
power ” A'h, 0 < i < N, where A'h = h and A'h = A°h = e. For example,
differential forms are “sections’” of the exterior powers of the (co-)
tangent bundle. _ _

Note that crn=n@ N and rcn=nE n, where 7 denotes the complex
conjugate bundle to n.
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4) If two representations h, and h, are given, then we can form their
sum and product, which we shall denote simply by the symbols for addition
(with positive integral coefficients) and multiplication. All these opera-
tions enable us to construct new bundles with the same base.

Chapter 11

CHARACTERISTIC CLASSES AND COBORDISMS

§4. The cohomological invariants of a fibre bundle. The
characteristic classes of Stiefel-Whitney, Pontryagin and Chern

To each real fibre bundle there are associated a collection of in-
variants, the Stiefel and Pontryagin classes. Let N be a bundle with fibre
R™ and base X. Classes W; € H (X, Z,) are defined, with Wy = 1 € HO(X, Z,)
and ¥; = 0, i > n. They are called the Stiefel-Whitney classes. There are
also Pontryagin classes p; € H*'(X, Z) and the Euler-Poincaré class
x € H"(X, Z) if n = 2k. Moreover, py = x> for n= 2 and p; = 0 for i > k.
If the classes p; and y are taken mod 2, then they are expressible in terms
of the Stiefel classes; to be precise, p; = W3; mod 2 and y = W, mod 2. We
form the “stiefel polynomial” W= 1+ W, + W, + ... and the ‘“Pontryagin
polynomial” P=1+p, t p, + ...

In a similar way one can associate to a complex bundle £, with fibre
C", Chern classes c; € H?*(X, Z) and a Chern polynomial C= 1+ ¢y * c5 *+ ...
Note that c¢; mod 2 is equal to W,;(r C),_ where r is the operation of making
the bundle £ real, and c,i(cn) = (-1)'p;(N), where c is the operation of
complexifying the bundle 7.

Properties of these classes are:

a) Bundle maps map classes to classes.

b) The Whitney formulae W(n,@ng) = W(ny) W(no),

C(C:@Cz)=c(§:)0(§z),
up to elements of order 2: P(N,@P n2) = P(ny) P(n2).

n
¢) Let us factorize the Chern polynomial C(&) formally: C = .u1(1+bi).
1=

n
dim b, = 2, and form the series ch& = I e®i € H*(X, Q), where Q is
i=1
the rational numbers. Clearly ch & is expressible in terms only of the
elementary symmetric functions of the b; which are the cp(&). Therefore

chl = hZOChk Z is meaningful in the cohomology ring. Similarly, for a

7

real bundle n, let

[ol

chn=chen= Y ch®*en,  ch¥*Hen=0.
X

=

ch £ is called the *Chern character”. It has the following properties:
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chi, @ La=ch{;+4ch{y,
chi; ® Ly=ch{,ch{,

d) For the Euler class y we have x (Ns@ N2) = x (M1) X (N2). If n is
the tangent bundle of a smooth closed manifold M", then the scalar product

(x (), [M"]) is equal to the Buler characteristic of M®. If M* is a complex
manifold, then x (rn) = ci(M).
]

e) If nis a complex U, - bundle with base X and rn its real form,
n n
then P(rn) = 'Hl (1 + b?), where c(n) = 'Hl (1 + b)), dim b; = 2,
1= =

For example p,(rn) = ¢ — 2cs.

It has already been remarked that W(rn) = C(n) mod 2.

EXAMPLE 1. The natural one-dimensional normal bundle n,; of RP" in
RP"*! (the “MBbius band ” ) has Stiefel polynomial W(n,) = 1 + x, where x
is the basis element of the group H'(RP", Z,). Similarly the one-dimensional
complex normal bundle &, of' CP" in CP"*! (the *complex MSbius band” ) has
Chern polynomial C({,) = 1 + x, where x is the basis element of the group
H®(CP", Z) = Z

EXAMPLE 2. If t(M) is the tangent bundle of the manifold (complex if
it is complex), them for M = RP" or CP" we have the formulae

T(RPYD1Ip=1D ... ®m (n+1 terms),
T(CPYDR1e=0D ... DL (n+1 terms),

where 1p and 1c are the one-dimensional trivial bundles. Therefore

W@RP™) = (1 + x)"*%, x € H*(RP", Z,) and C(CP™) = (1 + )™,

x € H3(CP", Z). By property e) it is easy to deduce that

P(CP™ = (1 + %)™, here W(M), C(M), P(M) denote the polynomials of the
manifold, that is, the polynomials W, C, P of the tangent bundle. In
particular G(CPY) = C(S? = 1 + 2x, *C(CP?) = 1 + 3x + 322 and

P(CP? =1 + 322, chT(CP*) = (n + 1)e* - 1.

§5. The characteristic numbers of Pontryagin, Chern and Stiefel.
Cobordisms

If " is a closed manifold, one can consider polynomials of degree n
in the Stiefel and Pontryagin classes and take their scalar products with
the fundamental cycle of the manifold. We get numbers (or numbers mod 2
for Stiefel classes). If M is a complex or quasicomplex manifold, one can
do the same with the Chern classes of its tangent bundle. We get Stiefel,
Pontryagin and Chern numbers. The following important theorem holds:

THEOREM OF PONTRYAGIN-THOM. 1) A manifold is the boundary of a com-
pact manifold with boundary if and only if its Stiefel numbers are zero.

2) An ortented manifold is the boundary of an oriented compact mani-
fold with boundary if and only if its Pontryagin and Stiefel numbers are
zero, ?

1 Statement 2) was finally proved only at the end of the 50's by Milmor,
Rokhlin, Averbukh and Wall.
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The corresponding theorem (Milnor, Novikov) for quasicomplex manifolds
has a more complicated formulation, since one first has to define what it
means to ‘‘be a boundary ", but after this it runs analogously, involving
the Chern numbers.

One defines the “cobordism rings” Q" = SQ' roughly as follows: the
“sum” of two manifolds of some class or other (orientable, quasicomplex,
etc.) is defined by forming their disjoint union and the *“product” by
forming their direct product; one also defines what it means to ‘““be a
boundary ” for each such class. The correctness of the definition has to
be verified. In this way there arise the *“cobordism rings” * with the
operations of addition and multiplication. Such a ring arises naturally
for each of the classical series of Lie groups {Op}, { SO}, {Unt, 1SULL,
{Sni, {Spin,} and the unit group. The following types of cobordism oceur:

N =Qp - non-oriented manifolds,
1= Q°%p - oriented manifolds,
% - quasicomplex manifolds (a complex structure on the stable

tangent bundle),
*sy - special quasicomplex manifolds (the first Chern class c, is
equal to zero),

Q'Spi" - spinor manifolds,
Ysp - symplectic manifolds,
ﬂ; - the Pontryagin framed manifolds, {} being isomorphic to the

stable homotopy group of spheres of index i, Qi ~ Ty, ;(SY).

The following results on cobordism rings are known.

1°. Any type of cobordism is completely defined by characteristic num-
bers after factoring by torsion. After tensoring with the field of
rational numbers all the cobordism rings become polynomial rings
(theorems arising from results of Cartan-Serre in homotopy theory and
Thom' s work on cobordism).

2°. Q% is a polynomial algebra over the field Z, (Thom). Q%o R 2Z, is
a subalgebra of Qp; ISy does not contain elements of order 4 or elements
of odd order; the quotient of Q%o by 2-torsion is a polynomial ring over
the integers (Rokhlin, Wall, Averbukh, Milnor).

3°. Q% is a polynomial ring. 0%, @ K and Q' ;s ® K are polynomial
algebras, where the characteristic of the field K is not equal to 2.
(Milnor, Novikov).

4° Q% ®K is a polynomial algebra if the characteristic of the field
K is not equal to 2. The ring Q% has no elements of odd order. The whole
subgroup (°8f = S0 8k** belongs to the ideal generated by Q%y= Z,. that
is, n":g"J’ = 015(;9":90 (Novikov). It seems that these are all the results
on cobordisms that have been known for some time (several years, at least).

To these results it is useful to add the following: for a complex
(real) manifold to represent a polynomial generator of the ring Q% or
sy 1t 18 necessary and sufficient that (in the complex case) the com-

ponents ch™n of the tangent bundle should be such that
1, a1 p

" 3 ‘ = )

|(nl Ch ", IM ]). o n ‘L 1 =p|‘
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where p is an arbitrary prime number. For example, for M" = CP" we have
(n! ch®n, [CP")) = n + 1, from which it follows that CP" is a poly-
nomial generator only for dimensions of the form p - 1, where p is prime.
In particular, CP', CP2, CP* and CP® are generators, while CP®, CPS,
CP’7 and CP® are not. Milnor has exhibited a system of ‘ genuine”
geometrical generators. For Q'SO the situation is analogous, but one is
then only concerned with cp2k,

§6. The Hirzebruch genera. Theorems of Riemann-Roch type

The simplest and oldest invariants of a complex Kdéhler (in particular,
algebraic) manifold are the ‘‘dimensions of the holomorphic¢ forms of rank
Q", denoted by h?'°. An important invariant is the *‘arithmetic genus”
x = £(-1)2h9°, Apart from ordinary forms one can also speak of forms
with values in an algebraic vector bundle £ over ¥"; we then obtain

x(M" D)=Z(—1)The 0 ().

Another invariant (in the real case) is the ‘*signature” of a mani-
fold of dimension 4k, this being simply the signature of the quadratic
form (x2, [M**)), where x € H2X(M**, R). This signature is denoted by

T(H*Yy.
We set:
1)y L= Li=] Lg:j”f , dimb=2 and P=|[](4+bj). Here
iz0 i i

Li=Lipi --.. pi) and dimL; = 4i.

2) 1= Ti= [[%J_ Ti=Ti(ey .., dim Ty =2, €= [[ (1+by).

i20 i J
bj
3 4= 4= —35 4=A(ps -... p), dim4,=4i.
iz0 j sinh%

Note that 7 = e2 1A and also that
L, =— L= 2
1=—5Pv L= (Tp.—p}),

. 1
7I=Tch Ty=5(C2+CY),

pi—4Ly
32.28

1
A1=ZP17 Ay =

Hirzebruch proved the following facts which are the basis of cobordism
theory:

(La(pys «--s )y (MYD=7(M*) (real case) -
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for k = 1 this becomes the theorem of Rokhlin and Thom;
ch & THY, W) = x M, &), where I is an algebraic bundle and M" is
an algebraic manifold, - for n = 1 this becomes the classical theorem of
Riemann-Roch and for n = 2 the formulae of Noether and Kodaira.

The following generalizations of these Hirzebruch formulae turn out
to be extremely important:

1°. If W, = W, =0, for a real manifold M*¥, then (Ar, [M**]) is an
integer. For odd k this number is divisible by 2. For k = 1 this reduces
to the theorem of Rokhlin.

2°. For a quasicomplex manifold M" the Todd genus (T,, [M"]) is an
integer (Borel-Hirzebruch, Milnor).

Note that in the algebraic case the first integrality theorem was
known, when c; = 0, since T = e1/24,

§7. Bott periodicity

As has already been said, the set of G-bundles with base X is identical
with the set of homotopy classes m(X, BG),. where BG is the base of the
universal bundle. Let G = Op, U, or Sp,. How many bundles are there with
base Sk? The set of these bundles is n(Sk, BG) = my(BG). By a theorem of
Cartan-Serre we know that np(BG) ® Q is determined by cohomological in-
variants (Pontryagin and Chern classes). However, we do not know the
torsion. For example NM,(BSO,) = Z, for n > 2, N BU,) = Z,.

How are we to compute fully the homotopy groups of the spaces EG? The
theorems of Bott completely compute M;(BOp) for i < n, M;(BU,) for i < 2n,
and n;(BSp,) for i < 4n.

THEOREM. There exists a canonical isomorphism between the sets

1) (X, BU,) and n(E*X, BU,) for dim X < 2n - 2,

2) n(X, BO,) and "(E®X, BO,) for dim X< n - 9,

3) n(X, BSpn) and n(E®X, BSp,) for dim X < 4n - 8.

For x = S* these are isomorphisms of cohomology groups. EX here denotes
the suspension of the space X, and E*X = EEF-1),

For X = Sk the Chern character of the bundle generating the group
T.r(BU,) i8 equal to ch"r\ = x, where x is the basis element of the group

H?R(S?%, Z) c H?k(S2k, Q). for X = S** the Chern character of the bundle
generating the group M x(BOp) is equal to ch"’kn = apx, where x is as in

1, if k is even.
2, if k is odd.

Here, of course, the dimension of the sphere is supposed to satisfy the
conditions of Bott’s theorem. Using the relation between the Chern classes
and the Chern character we get the fact that the Chern class of a complex
bundle with base S2* is divisible by (k - 1)!, while the Pontryagin class
of a real bundle over S** is divisible by ap(2k — 1)!.

One can also add to Bott’s theorem information on the first dimensions
not satisfying the “stability” conditions:

1) Mopey(BUR) » 23y 2) the kernel of the map M, (BOp) + Mp(BOp+y) is

the complex case and a} = {
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always Z, for odd n + 1 # 2, 4, 8, from this there follows at once the
nonparallelizability of the spheres St for k # 1, 3, 7 and the nonexistence
of finite-dimensional division algebras over R, except for the dimensions
2, 4, 8. (This has also been proved by Adams with other arguments; as a
corollary of Bott’s Theorem it was proved by Milnor and Kervaire.)

§8. Thom complexes

Let X be the base of a fibre bundle n with fibre R". The following
space will be called the Thom complex Ty : T, = Ey/A;, where E, is the
bundie space of n and Ay is the subspace consisting of all vectors of
length > 1 in each fibre.

The Thom isomorphism is defined to be a certain map

¢ HY(X) > H™ (T,), i~0

(cohomology over Z, for O,-bundles and over Z for SO,-bundles).

Note that there is a natural inclusion

j: XCT,.

EXAMPLE. X = BG and n the universal G-bundle, where G is a subgroup
of O,. Then n has R" as fibre. For example G = 0,, SO,, U, C O,p,
SUp CO2p, Spn CO4pn, € CO,. There is an inclusion Spin, C Oy. The space
T, is denoted in this case by MG. For G = e C O, we have Me = S".

THOM’S THEOREM (for G = e, Pontryagin). The groups M ., (MG)
are isomorphic to the cobordism groups Qé for large n and G = On, SOp,
Un/z- SUn/z- SPn/4.e- :

On the basis of this fact cobordisms can be computed. Note that the

ring structure of the cobordisms has a natural homotopy interpretation in
terms of the Thom complex ¥G (Milnor, Novikov).

§9. Notes on the invariance of the classes

The Stiefel classes can be defined in terms of the Thom complex. Let
Wi(m)=9¢'S¢'e (1),

where @: H*(X) » H**™(T;). This formula is easily verifiable for the
universal bundle. If it is applied to the tangent (or normal) bundle n
of a smooth manifold M", it makes it possible to compute the Stiefel
classes of the manifold in terms of the cohomological invariants of the
manifold - the Steenrod squares and the cohomology ring (the formulae of
Thom and Wu). In a similar way it is sometimes possible to compute the
Pontryagin classes up to some modulus or other (for example, p; mod 3).
However, unlike the Stiefel classes, the Pontryagin classes (rational,

In Thow' s work this is formulated only for G= 0, SO. For G = e this theorem
is contained in older work of Pontryagin. In the remaining cases the pruof
is similar.
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integral) are not invariants of homotopy type (Dold). Moreover, except for
Hirzebruch's formula, (Lp, [M**]) = T(M**), there are no “rational ”
homotopy-invariant relations for simply-connected manifolds (we shall say
more about this later). On the basis of cobordisms and Hirzebruch’s formula
about L, Thom, Rokhlin and Shvarts have proved the combinatorial in-
variance of the rational classes pj; the class Lk(M‘k”) is even a homotopy
invariant (Appendix). A fundamental problem is the topological meaning of
the rational Pontryagin classes (we shall say more about this later).

Chapter 111

GENERALIZED COHOMOLOGIES. THE K-FUNCTOR AND THE THEORY
OF BORDISMS. MICROBUNDLES.

§10. Generalized cohomologies. Examples.

We first recall what is meant in general by cohomology theories. They
are defined by the following properties:

1°.  “Naturality” (functoriality) and homotopy invariance — to a
homotopy class of maps of complexes X + Y there corresponds a homomorphism
H*(Y) » H*(X), composition of maps corresponds to composition of homo-
morphisms and the identity map to the identity homomorphism.

2°.  “Factorization” H*(X, Y)=H*(X/Y), Y X.

3%, “Exact sequence of a pair”.

4°. *“Normalization” - one has to prescribe the cohomology of a
point. (Absolute cohomology groups H* (X) should be considered as the
corresponding H*(X |J P, Py.)! It is importamnt, in particular, that for a
point X = P we have H'(P) = 0, i # 0; HO(P) = G is called the “coefficient
group " .

Note the important property of cohomology that it is a ‘‘representable
functor ”, that is

HY(X, Y; G = n(X/Y, K(@G, i)y,

where K(G, i) is an Eilenberg-MacLane complex for which n;(K(G, i)) = G
and nj(K(G. 1)) =0, t #7J.

In topology it is well-known how these general statements are used in
solving concrete problems. Homotopy theory, however, makes it possible to
construct an unlimited number of algebraic functors of a similar kind,
possessing all the above properties with the exception of the normaliza-
tion property (among them also their representability as homotopy classes
of maps).

If the normalization condition is added, then by a theorem of Filenberg
and Steenrod we get nothing other than ordinary cohomology.

A “generalized cohomology ” is a representable functor for which the
ocohomology of a point is non-trivial in arbitrary dimensions. One can also
define ‘‘generalized homologies”.

1 Here and in what follows we shall be concerned with spaces with base point;
in X J P the base point is P.
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A *“cohomology operation™ is a mapping of such a functor into itself
or into another similar functor (not always natural with respect to addi-
tive homomorphisms).

Even for ordinary cohomology there is a very large number of “co-
homology operations”, for example the Pontryagin powers and the Steenrod
powers. In the study of these operations and their applications their
representability is very important. It seems that the first generalized
cohomologies were introduced in particular cases by Atiyah and Hirzebruch
in the solution of concrete problems, while the general interrelations
were pointed out by Whitehead.

Consider a typical functor of this type. Let F= | X,, fnl be a spec-
trum of spaces and maps fp: X, » QXp+q or EX, » X,+,, where {l is the Serre
operation of taking loops on X,.,.

Let K be an arbitrary complex. Maps

frgt (K, Xp)— 0K, QXn4) ~ a(EK, X,4,).

are defined. Let Hj (K, L)=dirlimn(E**K/L,X,) (the limit being taken

n—»c0
over fn.). The groups H,,‘;(K, Ly are defined for -w < i < m. We also set
H;-(K) = H;-(K U P, P), where P is a point.
What is the cohomology of a point in this case?
By definition

HL(P)= Hy (PUP,, P,)=dirlim n,y; (Xn).

In all the ‘““‘good” cases we have ‘“stability”, that is for large n
M,+i(Xp) only depends on i.

Thus, in every such case the computation of the cohomology of a point
is the solution of a problem (as a rule a difficult one) in homotopy
theory.

We set Hp(K, Ly = SHEKK, L).

In many cases in such ‘“ generalized cohomologies™ one has also the
structure of a graded ring. This has not yet been axiomatized.

In most cases we have to deal with generalized cohomology rings.

There is an easily proved fact which sometimes makes it possible to
compute ‘ generalized cohomologies™ if they are known for a point.

There exists a spectral sequence | E,, d, |, where E, = I E'9,

Prq

d. B2 9, E’,’”'qdn and E‘Z"’ =K L; H},(P)) (in the usual sense) and

b Ez,'q is related to H:-(K, Ly.
p+q =n
EXAMPLE 1. X, = K(G, n), QXp, = Xa.4; we get the ordinary cohomology
theory. Here cohomology is trivial for negative dimensions.
EXAMPLE 2. 8) Xon = BU, Xapea = U (U= yU,). Bott periodicity gives
n

Xn = QXner. Let HiK, Ly = K&K, L), K& = SKE.
b) Xen = BO, Xgp-1 =0 (O = L"jOn).
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Then Xgn+4 = BSp and Xepnes = Sp (Sp = |J Spn) (Bott periodicity). Let
n

H;. K, L) = K;(K. D, K; = ZK;. The last two cohomology theories are called

the K-theories (real and complex). We shall give here an alternative
definition (Grothendieck).

Denote by L(Y) the set of all vector bundles with base Y and by L(Y)
the free abelian group (with composition sign +) generated by L(Y). Let

M+m=nEn, M, eL(Y)

The quotient group of L(Y) by this equivalence relation is denoted by K(Y),
or sometimes in the real case by Kp(Y) and in the complex case by K¢(Y).
Kp and K¢ are rings with respect to &. There is a dimension homomorphism

(dim): K,(Y)—Z, A=R, C.

Let K%=Ker(dim). Let K;' (K, L)=K%(E'K/L), K4=3K%\, i<o. By
Bott periodicity KZ(E?Y) = K&(Y) and K} (E®Y) = KR(Y), and therefore the
definition extends to positive numbers i > 0, by periodicity.

Now let K9 =2Kf\, — oo < i<{oo., It can be shown that this new

definition of K&, KG coincides with the original one.
For the form of the functor at a point it is sufficient by Bott
periodicity to consider the structure of the ring only for the sum

.EOK" = K*. We give the following generators and relations.
T

a) K¢ is generated by u € K¢2 and 1 € K. The ring is a polynomial
ring over u.

b) KR is generated by 1 € K}, u € Ki*, v € Kg*, v € Kg° the relations
are 2u=0, u® =0, uv = 0, v? = 4w,
“Chern characters” defined by

ch: K¢c(K, LY— H*(K, L; 0),
ch: Kp(K, L)—>H‘(K, L; @),
are ring homomorphisms. A new formulation of Bott periodicity is:
Ke(X X 8)=Kc(X)® Kc(5?),
Kp(X x 8% =Kg(X) ® Kr(S®).

An important fact is that there is a Thom isomorphism for the complex
K-functor. Let n be a complex vector bundle with base X and T, its Thom
space. Then there is a Thom isomorphism:

ox: Kc(X)— K& (Ty).

By contrast with ordinary cohomology, however, there are in this case
many “Thom isomorphisms” . This has important consequences later on.
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EXAMPLE 3.
{Xn=MO0,}, {Xin=MSp,},
{Xn=MS50,}, {Xp=8"=Me,},
{in=MUn}, eCO,,.
{Xon=MSU,}. .

We call the corresponding cohomologies cobordisms. They admit also a
good geometric interpretation, and there are very useful homology theories
dual to them - bordisms.

For let us set H";(K. L) = ®p+i(Xn%K/L), where % is the operation of
multiplication followed by identifying to a point the coordinate axes. In
particular, when X, = S", we get the *“stable” homotopy groups of the space
K/L. For a manifold bordisms and cobordisms are related by a duality law
of Poincaré type. The role of the *“coefficient group”, that is the ring
of bordisms of a point, is here played by the ring g, of especially
good structure when G = O, or Up.

EXAMPLE 4. Let Hp = (2™S™°, Then inclusions H, C Hn+, and O, C A,
are defined, since H, consists of maps S" + S" of degree +1 preserving
base point. H, is an H-space.

N T
Let! BH, = ({*'S™). Then (natural) maps BO, » BH, are defined;
let H= |y H,; also let BH = 1imBH,. Then a natural map BO » BH is
n n

defined. Let BH = X and X_; = Qi BH. The groups N;+1(EH) are isomorphic
to the stable homotopy groups of spheres of index t.

Let O-Y(K, L) = n(EK/L, BHy, i 3 0. It is easy to verify that
M-k, L) is a group for all i. A natural map

J: Kg'(K, L)—>T*(K, L).

is defined. The image JK;' is called the J-functor J(K, L). For K = &,
L = P we have

Kg'(K, LYy=m,(BO) ~ n;_, (0),

I (K, L) = (BH) = niy1-1 (S™),
N large.
We have the classical J-homomorphism of Whitehead:

J: Ni—y (ON) —> NANel-q (SN).

The J-functor is very important in many problems of differential
topology.

In this example all the properties of generalized cohomologies are
present except that the spectrum X, is only defined for n < 0 and there-
fore, generally speaking, only the cohomology of negative degree is
defined. This is more frequently, though less efficaciously, the case in
homotopy theory. We give another example of the same type.

EXAMPLE 5. Consider “Milnor’s microbundles® in the combinatorial

1 The sign ,\ on top here denotes the universal covering apace.
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sense. A complex K lies piecewise-linearly in a complex L D K. To each
(emall) neighbourhood U C K there exists a neighbourhood V C L such that
Vi L such that ¥V N K = U and V is combinatorially equivalent to U x R"
so that a “projection” p: V- U is given. On the intersection of two
such neighbourhoods U, and U, the projections py, : V5 » U, and
pr,: V2 U, agree on Vy N V, (but the *“dimension” of the fibres is not
supposed to be unique). Two microbundles N, :K CL, and n,: K C L, are to
be regarded equal if there are neighbourhoods Q; C L; of the complex K in
L; combinatorially equivalent and preserving the *fibre structure”
round K.

For microbundles there is a ‘““Whitney sum”, a *structure group” PL,
and a universal bundle with base BPL,. There are also inclusions

O, CPL, and PL,C PLp+s. Let PL = dirlim PL, and define BPL

n—+co
analogously. A map BO » BPL is defined. Using the Whitney sum (D, one can
introduce a *‘Grothendieck group ” of microbundles kpr (K, L) and
kp; = Z + kgL(K, Ly. Analogously one introduces k;i(K, L) = kgL(EiK/L).
There is the Milnor homomophism

j: KR(K, L) ﬁkPL(K, L);

there are also the concepts of *‘tangent” and *stable normal ” micro-
bundle of a combinatorial manifold.

The following facts are known:

a) A combinatorial manifold is smoothable if and only if its ‘ tangent
bundle ” n(M") € kpL(M™) belongs to the image of j (Milnor).

b) The relative groups m;(PL, O) are isomorphic to Milnor's groups of
differentiable structures on spheres I"™ (Mazur, Hirsch). In particular,
the image of M,(0) = Z is divisible by 7 in the group m,(PL) = k$;(S°)
(Kervaire). From this it can easily be deduced that for a suitably chosen
manifold the homomorphism j : Kp(M") » kpr (M™) has kernel isomorphic to Z,.
From this in its turn it follows that there exists smooth combinatorially
identical manifolds with differing tangent bundles - and even differing
T-torsion in the Pontryagin class p, (Milnor). In this way the torsion of
the Pontryagin classes is seen not to be a combinatorial invariant.

¢) Homotopy type and the tangent bundle (or its invariants, the
rational Pontryagin classes) determine a combinatorial manifold modulo
“a finite number of possibilities” if M, = 0 and the dimension is > 5
(Novikov).

One may consider the corresponding J-functor. A homomorphism of
functors

ke (K, L) 5 (K, L),
YK, L)

is defined. This triangle is commutative, that is J = Jproj. If L = P,
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K = S°, then k;z(K, L) = n;(BPL). We have

JpL
M- (PL) —— sty 1(S )

N/

-1 (0)

where N is large. Note that the map j is a monomorphism for K = S°, L =P
(Adams). One can consider a natural *fibration”

D: BH—)XSO

with fibre BSO. There corresponds the exact sequence
—1 J - n * r 4 0 n J 0 n
Kg'(M™) — IV (M") — Tgo(M )— Ke(M™) — 11 (M™).

Here M* is a closed simply-connected smooth manifold, and ['sp(M") denotes
nM*, Q Xsp). We denote by n*(M™) the group of homotopy classes of maps of
M"™ onto itself of degree +1 preserving the stable ‘‘tangent” element.
-ne€ Kg(M"), where n € Kg is the stable *“normal ” element. Then the group

n*(M") acts somehow on the groups which enter here. Novikov’s result on
the diffeomorphism problem can be formulated as follows: for n # 4k + 2
the set of manifolds, having the same homotopy type and tangent bundle as
a given manifold M*, is the set of orbits of the group m' (M) on

Im x = O°*(M")/JKz (™), if these manifolds are identified modulo the
group of differential structures on the sphere 0®(OnN). For n = 4k + 2 the
additive Arf-invariant @: Im X » Z, is defined on the group Im X and in
place of Im X one has to take Ker @. The role of the group Ker J = Im &
will be indicated in Chap. IV, §12. There is an analogous result in the
piecewise linear case with kp} replacing K;i1 and BPL replacing BSO. It
is interesting to note that although this result is equivalent in form to
the old one yet in other (non-stable) problems, concerning the type of
n-dimensional knots to be precise, the corresponding statement only
approximates the correct one, as J. Levine has shown for embeddings® of the
sphere S" in S™**, This result of Levine’s is not yet published; the
possibility of interpreting the answer as an approximation has also been
pointed out to me by A.S. Shvarts. It is interesting to note that in the
example of the homotopy type of S®, where the diffeomorphism classification
was earlier obtained by Milnor and Kervaire, the group structure arises on
account of the fact that m*(¥") = 1, if we look at things from the point
of view of the general theorem. The group PSO(M") brings together a number
of problems on diffeomorphisms — the subgroup Im¥ C I'sp, with the problem
of normal (tangent) bundles (cf. Chap. IV, §12), being related to the set
{n+Ker J} CKRM™, Ker J = Im 6 = I'sp/Imx.

1 Here in place of H, one has to take Gp, consisting of the maps S* ! - s"°?

degree +1 without fixed point.
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Chapter IV
SOME APPLICATIONS OF THE K- AND J-FUNCTORS AND BORDISM THEORIES

§itl. Strict application of K-theory

Atiyah and Hirzebruch have proved a number of theorems generalizing to
the case of differential manifolds Grothendieck’ s form of the Riemann-Roch
theorem.

Consider two manifolds M3 and M}2, n; — n, = 8k, and a map f: M, - ¥..
We shall suppose that the manifolds are oriented. Fix (if possible)
elements ¢y € H2(My, Z) and c3 € H*(,, Z) such that ¢, mod 2 = w, and ¢’
cy mod 2 = w,. Let f*cj = c,. Denote by f« the map Df.D:H‘(MQ - H*M,),
D being the Poincaré duality operator. Let £ € Kp(Mi?). Then we have the
following fact ( ‘the Riemann-Roch theorem ” ):

There exists an additive map f, : Kp(M,) - Kp(M2) such that

fo(ch T4 (M) =ch fLA(M>).

There is an analogous theorem for maps of quasicomplex manifolds, but
here one can dispense with the condition n, — n, = 8k, while the T-genus
replaces the A-genus. One should note that an important part in the theorems
is played by, first, Bott periodicity in terms of K-theory and, secondly,
the Thom isomorphism of K-theory. The situation is that in K-theory there
is a Thom isomorphism in the following cases:

a) for the complex K-functor

ox: K¢ (X)— KZ(T),

where n is a Uy-bundle over X;
b) for the real K-functor

¢x: Kr(X)—Kg(Ty),

where n is a Spin-bundle over X (wy, = wy, = 0).

However, this time there are many Thom isomorphisms. One should notice
that the Thom isomorphism may be chosen such that the following conditions
hold:

ch(gpxa)=T (M) ¢p(cha) (case a)),
ch(gxa)=A4(n)¢(cha) (case b)),

where Qg is the chosen Thom isomorphism in K-theory and @ is the standard
Thom isomorphism in ordinary cohomology. One should notice that it is
sufficient to construct these Thom isomorphisms for universal bundles,
depending only on the invariants of the Lie groups and their representations.
In this context the T- and A-genera therefore arise out of the com-
mutativity law for the Chern character with the (chosen) Thom isomorphism.
Other *“universal ” Thom isomorphisms may lead to other “multiplicative
genera” and “Riemann-Roch theorems " . The integrality of the A-genus is
obtained here (as in the algebraic Grothendieck theorem) if M, is taken to
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be a point. Of course, these theorems are not given here in their general
form, nor do we give a number of interesting corollaries.

Another important result has been obtained in a neighbouring field by
Atiyah and Hirzebruch. This concerns the “index” of an elliptic operator
on a manifold without boundary. To an elliptic operator (defined and taking
its values on the sections of bundles F, and F, over X2!y there corresponds

a “symbol” o: n*F; 5 n*Fy, where m:Sy» X is the natural fibration of
the manifold of unit tangent (co-)vectors over X and X is a Riemannian
manifold. The index of the operator depends in fact only on the homotopy
class of the symbol and is trivial if the isomorphism ¢ induces an iso-
morphism (X 0): F, » F, of fibre bundles over X (Vol'pert, Dynin). In an
elegant way one constructs an “invariant” a(0) € Kj(Ty), where n is the
tangent bundle on X and the index is a homomorphism

I: Kp(T,)—Z.

Moreover, by a theorem of Cartan-Serre the index depends only on
ch a(0) € H'(T.,,, Q). One constructs a *“special Thom isomorphism”

9z KR(T))® 0—Kr(X)® 0,

and the index depends only on ch (9;" a(0)).

The situation is therefore reduced to pairs consisting of a manifold
X and a vector bundle L over X with a special operator ( *the Hirzebruch
index "), whose Chern character is easily computed - such operators give
a “complete” set for the index problem.

Moreover, an important theorem, the “ intrinsic homological invariance”
of the index, has been proved in a convenient cobordism form, and the
solution of the problem is easily accomplished on the basis of Thom’s
theory. The final formula is

I(o)=((¢7'cha (o)) T (cn), [X])-

For example, the A-genus is the index of the “Dirac operator” of a
spinor structure.

Particularly interesting results have also been obtained by Atiyah in
the theory of smooth embeddings. A striking example is the application of
these general theorems to the embeddings of the complex projective spaces
CP™, which cannot be embedded in spaces of dimension less than (for
example) 2(n - B(n)), where B(n) is the number of 1’s in the binary repre-
sentation of n. Interesting links have also been found between the Kc¢-
functor, the cohomology of finite groups and the *representation rings”.
Indeed, in the most recent papers cohomology operations in the K-functor
are used, though not quite explicitly.

§12. Simultaneous applications of the K- and J-functors.
Cohomology operation in K-theory

We state to begin with some “general ” theorems on the connection of
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the K- and J-functors with topological problems. It is easy to see that
the normal bundle N of a smooth closed manifold X has a Thom complex Ty
with spherical fundamental cycle (the Thom complex is “reduced”), while
the Thom complex of a trivial bundle of dimension N over X is the bouquet
of a sphere SV and the suspension EVX, that is, it is *“coreduced”.
Moreover for any two elements @,, @, € K(X) possessing either of these
properties simultaneously J(a,) = J(a,), where J: Kgp(X) » J(X), that is,
these properties are J-invariant. Atiyah noticed the essential fact that
the Thom complexes of an element ¢ + N, & € K° and (n - ®) + N,, where n
is the representative in K°(X ) of the normal bundle. are ‘“S-dual” to
each other; he proved that the ‘reducibility” of the Thom complex of the
element @ is equivalent to the statement that this element is equal to the
normal bundle in the J-functor, that is, the set of “ reducible” elements
of K3(X) is exactly J-'J(n), where n € K3(X) is the normal bundle.
Similarly for the “tangent” bundle (-n) € Kp(X). For simply-connected
odd-dimensional manifolds of dimension > 5 Novikov and Browder proved the
converse ‘“realization theorem', namely that every element
(-n;) €J” 1J( —n) is the *“tangent bundle’” of some manifold Xk of homo-
topy type X for even k the formulation is more complicated; 1t is final
only for k =0 mod 4, when the *tangent bundles” consist of all the
elements -n; € J"WJ(-n), satisfying the *“Hirzebruch condition"”

(X)) = T(x*9).

It is interesting to note that for a non-simply-connected manifold of
dimension 4k + 1 this theorem is not true by the formula for the rational
class Ly(M** *1) given in the Appendix.

From the finiteness of the J-functor and from these theorems it is
clear that for simply-connected manifolds one can vary the tangent bundle
(and the Pontryagin classes) very freely within a given boundary type.
There are analogous theorems for combinatorial manifolds also - one has to
consider k pL in place of K° and Jp;, in place of J. A combinatorial manifold
has the homotopy type of a smooth manifold if (under analogous homotopy
restrictions) its “normal microbundle” n € k?,L(X) is such that there is

in the set Jp; JpL(n) an element of the image JKR(X) C kP, (X), if the

dimension is odd (for even dimensions it is, as before, more complicated).
For example for M® = S? x S* the “tangent” elements are all T; € K3(¥®)
such that w, = 0 and p, = 48Au, where A is an arbitrary integer and u is
the basis element of H*(M®) = Z, There is a family of manifolds ¥® homo-
topically equivalent to S? x S* and with class p, = 48Au. It is interesting
that it follows from the latest paper of Novikov that the class p,(M") is
topologically invariant; we get a proof of the difference of homeomorphism
and homotopy type of closed simply-connected manifolds. For n > 3 no
example of this, even non-simply-connected, was known.

Finally, the following lemma due to Adams and Atiyah tumns out to be
very important in further applications: if Kg(RPk) = JO(RP*) for all
dimensions, then on all spheres S™ there are exactly p(n) — 1 linearly
Independent vector fields and no more, where p(n) is defined as follows:
itn+ 1252+ 1), b=ct 4d, D c < 3, then p(n) = 2° + 8d. Note
that this number of fields was already known classically and had been
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proved in a number of cases. In particular, Toda had also noted this lemma
in another context, and had computed the number of fields where this was
possible, enabling him to compute the homotopy groups of spheres and the
classical J-homomorphism on this foundation (for example for k < 19 and
n < 2''). Adams has solved the j-functor problem completely in this case
for all k. We give the basic outline of his method.

It had already been observed (Grothendieck, Atiyah) that there were
“operations ” in K-theory, related to the exterior powers. They are
denoted by \; and possess the property

M@ ty)= 2 b k().

However, these operations are non-additive and it is therefore difficult
to apply them. Adams was led to introduce operations ¥i: K, (X) — K, (X),
(expressed in terms of the \;) which were ring homomorphisms and such that

Ly =VY, where P9 =(dim), P! — is complex conjugation and

Yp!=1,=1. Moreover, ! (r)=z!, if x is a one-dimensional A-bundle.
Note that ch"yfn=~Kk" ch™). These operations are remarkable from the
point of view of the usefulness of their application. It is rather easy to
compute the Ko-functor with its operations for CP" and CP"/CP""‘".
rather more difficult to compute the Kp-functor with its operations for
RP™ and RP"-k-!, Adams did this and the desired result about J(RP¥)
followed almost immediately from the answer. From this it also follows that
the classical J-homomorphism

JRZy: 1 (On)® Zy—> ysig (SN) ®Z,

is always a monomorphism, and this implies the topological invariance of
the tangent bundle of a sphere S* for i = 1, 2 mod 8 (for i ¥ 1, 2 mod 8
the invariance was known). In a number of cases (for example for X = S‘")
Adams has succeeded by other methods in giving an upper bound on the order
of the J-functor: to be precise, if x € K¢(X) then J(k‘v(w’é - 1)x) = 0 for
large N and for all k. This gives a complete or almost complete answer for
S*7, To obtain similar estimates in the general case is an interesting
problem.

The introduction of the operations wk made it possible to introduce
new ‘“characteristic classes” into K-theory: let x € KR(X) and let the
Thom complex of the bundle m = x + N possess a Thom isomorphism
O Kp(X) > K3(Ty). Let pi(x) = @z' Whox(1) by analogy with the Stiefel
classes. Since Qg is not uniquely determined in K-theory these classes pj
are not uniquely defined but the degree of indeterminacy is easily com-
puted. These classes are very useful for estimating the order of J°(X)
from below (Adams, Bott).

§13. Bordism theory

In Chapters I and II we have already spoken of cobordism groups and
rings and have pointed out the general cohomological and homological
theories connected with them (the first cohomological approach here, as in
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K-theory, was made by Atiyah). This theory was developed by Conner and
Floyd in connection with problems on the fixed points of transformations;
recently the theory has been used to obtain a number of other results,
among which one should note the work of Brown-Peterson on the relations
between the Stiefel-¥hitney classes of closed manifolds and also the
results on the groups Q‘SU. obtained simultaneously by a number of authors
(Conner-Floyd, Brown-Peterson, Lashof-Rothenberg). In particular in the
middle dimension Brown-Peterson and Lashof-Rothenberg have with the help
of the group Q§U+2 solved the well-known problem about the Arf-invariant
of Kervarie-Milnor in the theory of differential structures on spheres.

a) Brown and Peterson study the following ideal:

hi (z+y)=j+12= M@ M),

where Tnt M* + BO is the classifying map for the (stable) tangent

bundle of M". By using O-bordism theory it has been proved that this ideal
oconsists only of those elements *“trivially " belonging to it purely
algebraically, according to the formulae of Thom and Wu. Analogous results,
more complicated to formulate, have been obtained for the ideal I,(SO, 2).
In the proof a “right” action of the Steenrod algebra in the category of
complexes and bundles is introduced and studied; there is an elegant treat-
ment of the Thom-Wu formulae and an isomorphism of cohomology theories

J®Zy: 7y (On) R Zy—> niyyicy (SN) ® Z,

is constructed, N,(X) being the bordism group; it is sufficient to verify

this isomorphism for points only. It is then applied to X = K(Z,, m) and
this gives the result.

b) In the work of Conner and Floyd U-bordism theory is applied to the
study of the number of fixed points of involutions of a quasicomplex mani-
fold onto itself. More precisely, they study a quasicomplex involution
T: M2 5 M?" such that its set of fixed points decomposes into a union
V=M M2 ... U M? 2 of quasicomplex submanifolds in whose normal
spaces ‘““reflection” (in the form of non-degeneracy) occurs. Cutting out
an invariant small neighbourhood B of V from M2" and setting

N = M\B)/T,
we see that

ON = OB/T
and that N is quasicomplex.
Consider now the “bordism” group U,(RP“) to which we relate the

group 'Sk He(RP®, Qb). The ring Qj; is therefore a polynomial ring over
L

Z, having one generator in each dimension 2m, this generator being CP?!
when m = 1. Thus,

150, 2)= ] Kert},,
MT
while the *geometrical ” generator is (RP2%"! x M2!, f), where M?! is the
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generator of Ql"}l‘ and f is the projection RP2*"! x M2l & RP®. The
original involution determines a *‘relation®

d(N, F), F: N— RP>,

where N was defined above and F: N » RP® is obtained by factorizing with
respect to T the map M\B -~ S®, which commutes with the involutionms.
Thus, there is a correspondence between involutions on arbitrary manifolds
M2" and relations between the basis elements in U,(RP®), arising by pull-
back from the group THx(RP®, Q7)) related to U,(RPS.

There is an elegant proof of the following relation:

2(RP?*1 @ 1)= RP* 3 ® CP!,

where RP?'~! are the basis cycles in RP® and 1 and CP? are the genera-
tors of Q7 and R (in fact, all other relations follow from this one).

Since CP! is a polynomial generator in {j;, that is, the powers
(CPY)™ are irreducible in Q},, it follows that if the fixed points of an
involution are isolated, for example, for a complex manifold M3® (the
dimension is real, the involution quasicomplex) then their number is
divisible by 2", since O(N, F) in this case is

S RPF-1 @1 =ARP*™I @1,
and A\ must be divisible by 2" since
ARP?™1 @1 =0,

This is the main result, but if one wishes to give a more general
formulation, concerned not only with the zero-dimensional case, then in
the case when the normal bundles of the manifolds M?' C M?" are trivial
it can be expressed as follows:

Let [M2¢] denote the class of M2' in Qﬁi and let x be the element
cp?

= € Qﬁ@ Q. Then the element

-;—(x"dlMOI—}-zﬂ—z MY+ ...+ [M2™2))

is “integral ” in Q; ®Q, that is, belongs to Q.

¢) Another beautiful application of the general theory of U- and
SU - bordisms is the final computation of the 2-torsion in the ring qu
(Conner-Floyd, Lashof-Rothenberg, Brown-Peterson). Here connections have
successfully been found between the U- and SU -bordisms of different
objects. From their results it follows, for example, that all the 2-
torsion in Q.’;U is Qéuﬂgb’; for even k this was not known and the old
methods led to serious difficulties. As has already been pointed out,
these methods of studying the ring Q%U led to the solution of the Arf-
invariant problem in the middle dimension.

The most important unsolved problems of this theory are the study of
the multiplicative structure of the ring {3, and also of the ring Qg,;,
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on which little is known is “modulo 2" . It would be useful to compute
“bordisms " and *“cobordisms” for a much wider class of spaces, as this
would widen greatly the possibilities of application. Note, for example,
that the U, -theory is contained as a direct component of the Kc-theory.

The large number of interconnections introduced into topology by the
new outlook on homology theory is apparently such that it would be im-
possible to describe beforehand the circle of problems that will be solved
in this region even in the relatively near future.

APPENDIX
The Hirzebruch formula and coverings

Novikov has found an analogue to the Hirzebruch formula, relating the
Pontryagin classes to the fundamental group. Let M*®*P e a smooth (orPL)
manifold and let x € H4k(M"“", Z) be an irreducible element, such that
Dx =y, Y2, .., yn mod Tor, y; € H1, D being Poincaré duality. Consider
a covering p : M - M*k*", for which there are paths Y, covered by closed by
paths, such that (Y, y;j) =0 (i =1, ..., n). Let * € Hep(M, Z) be an
element such that p,x = x, % being invariant with respect to the monodromy
group of the covering. It is unique up to an additive algebraic restriction
on this element. Let T(Z) be the signature of the quadratic form (y* %),
y € H2* (M R), the non-degenerate part of which is finite-dimensional.

For n = 1, and also for n = 2 provided thnt H2k+1(ﬂ R) is finite-
dimensional, it has been proved that (Lk(M‘ +"). x) = T(Z), which already
in these cases leads to a number of corollaries and also has application
to the problem of the topological invariance of the Pontryagin classes
even for simply-connected objects.

Note in proof. The author has recently completed the proof of the
topological invariance of the rational Pontryagin classes (see [46)).

Translator’s note. In [46] Novikov states that the topological in-
variance is an easy consequence of the following fundamental lemma of
which he sketches the proof:

LEMMA : Suppose that the Cartesian product M** x R™ has an arbitrary
smooth structure, turning the product into an open smooth manifold W, Al
being a compact closed simply-connected manifold. Then
Lr(hy, [M*) ® 1) = T(M*®), vhere the Ly (W) are the Hirzebruch poly-
nomials for the manifold W and T(M**) is the signature of the manifold ¥**.

Some pointers to the literature

The literature is distributed over the various sections in the follow-
ing manner:

§§1-3 - [1],

§¢ - [2], [18),
§s - [3]-[13},
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§6 - [14), [15],
§7 - [16] - [21]
§8 - (3], [6], [11], [12], [28].
§9 - [2], [22]-[24], [33],
§10 - [25]-[33], [35], [40],
§11 - [29]), [34]-[38],
§12 - [28), [s33], ([35), [3s]-[41],
§13 - [a2]-[45]
Appendix - [39], [46],
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